{"title":"An Overview of Deep Learning in MRI and CT Medical Image Processing","authors":"Ahliddin Shomirov, Jing Zhang","doi":"10.1145/3481113.3481125","DOIUrl":null,"url":null,"abstract":"The medical image is a set of all organizations, institutions, and resources whose primary goal is to improve health. The extensive growth of medical data increases the utility of machine learning and deep learning in the healthcare domains. Nowadays, the use of in-depth training to process medical images has received particular attention. In recent years, medical instruments have developed rapidly with the help of artificial intelligence and are widely used to process medical images. Artificial intelligence is numerous sources of medical imaging processing such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). CT and MRI image processing tasks with a high computation time requirement and computation speed. Nowadays, one of the most critical trends in the development of computer technology in neuroscience is the processing of medical images and digital images, which are used to improve image quality, restore damaged images, identify individual elements and diagnose various diseases. In this paper, we briefly review the progress and challenges associated with in-deep learning in the processing of CT and MRI medical images.","PeriodicalId":112570,"journal":{"name":"2021 3rd International Symposium on Signal Processing Systems (SSPS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Symposium on Signal Processing Systems (SSPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3481113.3481125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The medical image is a set of all organizations, institutions, and resources whose primary goal is to improve health. The extensive growth of medical data increases the utility of machine learning and deep learning in the healthcare domains. Nowadays, the use of in-depth training to process medical images has received particular attention. In recent years, medical instruments have developed rapidly with the help of artificial intelligence and are widely used to process medical images. Artificial intelligence is numerous sources of medical imaging processing such as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). CT and MRI image processing tasks with a high computation time requirement and computation speed. Nowadays, one of the most critical trends in the development of computer technology in neuroscience is the processing of medical images and digital images, which are used to improve image quality, restore damaged images, identify individual elements and diagnose various diseases. In this paper, we briefly review the progress and challenges associated with in-deep learning in the processing of CT and MRI medical images.