{"title":"Large Mixed-Frequency Vars with a Parsimonious Time-Varying Parameter Structure","authors":"T. Götz, Klemens Hauzenberger","doi":"10.1093/ECTJ/UTAB001","DOIUrl":null,"url":null,"abstract":"\n In order to simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural change, we introduce a time-varying parameter mixed-frequency vector autoregression (VAR). Time variation enters in a parsimonious way: only the intercepts and a common factor in the error variances can vary. Computational complexity therefore remains in a range that still allows us to estimate moderately large VARs in a reasonable amount of time. This makes our model an appealing addition to any suite of forecasting models. For eleven U.S. variables, we show the competitiveness compared to a commonly used constant-coefficient mixed-frequency VAR and other related model classes. Our model also accurately captures the drop in the gross domestic product during the COVID-19 pandemic.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
In order to simultaneously consider mixed-frequency time series, their joint dynamics, and possible structural change, we introduce a time-varying parameter mixed-frequency vector autoregression (VAR). Time variation enters in a parsimonious way: only the intercepts and a common factor in the error variances can vary. Computational complexity therefore remains in a range that still allows us to estimate moderately large VARs in a reasonable amount of time. This makes our model an appealing addition to any suite of forecasting models. For eleven U.S. variables, we show the competitiveness compared to a commonly used constant-coefficient mixed-frequency VAR and other related model classes. Our model also accurately captures the drop in the gross domestic product during the COVID-19 pandemic.