Rosario Distefano, F. Fummi, C. Laudanna, N. Bombieri, R. Giugno
{"title":"A SystemC Platform for Signal Transduction Modelling and Simulation in Systems Biology","authors":"Rosario Distefano, F. Fummi, C. Laudanna, N. Bombieri, R. Giugno","doi":"10.1145/2742060.2742115","DOIUrl":null,"url":null,"abstract":"Signal transduction is a class of cell's biological processes, which are commonly represented as highly concurrent reactive systems. In the Systems Biology community, modelling and simulation of signal transduction require overcoming issues like discrete event-based execution of complex systems, description from building blocks through composition and encapsulation, description at different levels of granularity, methods for abstraction and refinement. This paper presents a signal transduction modelling and simulation platform based on SystemC, and shows how the platform allows handling the system complexity by modelling it at different abstraction levels. The paper reports the results obtained by applying the platform to model the intracellular signalling network controlling integrin activation mediating leukocyte recruitment from the blood into the tissues.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Signal transduction is a class of cell's biological processes, which are commonly represented as highly concurrent reactive systems. In the Systems Biology community, modelling and simulation of signal transduction require overcoming issues like discrete event-based execution of complex systems, description from building blocks through composition and encapsulation, description at different levels of granularity, methods for abstraction and refinement. This paper presents a signal transduction modelling and simulation platform based on SystemC, and shows how the platform allows handling the system complexity by modelling it at different abstraction levels. The paper reports the results obtained by applying the platform to model the intracellular signalling network controlling integrin activation mediating leukocyte recruitment from the blood into the tissues.