{"title":"Spray Coated Piezoresistive Bend Sensor for Controlled Movements in Soft Robots","authors":"Oliver Ozioko, R. Dahiya","doi":"10.1109/fleps53764.2022.9781547","DOIUrl":null,"url":null,"abstract":"This work presents a flexible piezoresistive sensor for measuring the bending angles to facilitate controlled movements in soft robots. The sensors was realized using a piezoresistive sensing material prepared by mixing graphite in a polyvinylidene fluoride (PVDF) solution. The resultant graphite solution was spray-coated on a ~80µ-thick polyvinylchloride (PVC) substrate to realize a 5 x 5cm- wide piezoresistive film. Three similar sensors (~3mm x 30mm in dimension) were realized and their performance compared. The results obtained show a change in resistance ΔR/RO ~80% for a bending angle of 50o and a sensitivity of ~ ΔR/Ro = 1.5% per degree bending. The sensor makes it possible to measure in real-time the bending of soft and flexible robot as it can uniquely detect the bending conditions. Hence, the sensing information from the sensor could be used for a close loop control of their locomotion or reconstruction of their shapes.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a flexible piezoresistive sensor for measuring the bending angles to facilitate controlled movements in soft robots. The sensors was realized using a piezoresistive sensing material prepared by mixing graphite in a polyvinylidene fluoride (PVDF) solution. The resultant graphite solution was spray-coated on a ~80µ-thick polyvinylchloride (PVC) substrate to realize a 5 x 5cm- wide piezoresistive film. Three similar sensors (~3mm x 30mm in dimension) were realized and their performance compared. The results obtained show a change in resistance ΔR/RO ~80% for a bending angle of 50o and a sensitivity of ~ ΔR/Ro = 1.5% per degree bending. The sensor makes it possible to measure in real-time the bending of soft and flexible robot as it can uniquely detect the bending conditions. Hence, the sensing information from the sensor could be used for a close loop control of their locomotion or reconstruction of their shapes.