Why does SBVH outperform KD-tree on parallel platforms?

A. Breglia, A. Capozzoli, C. Curcio, A. Liseno
{"title":"Why does SBVH outperform KD-tree on parallel platforms?","authors":"A. Breglia, A. Capozzoli, C. Curcio, A. Liseno","doi":"10.1109/ROPACES.2016.7465401","DOIUrl":null,"url":null,"abstract":"We spot on the performance of two acceleration data structures for electromagnetic ray tracing purposes on GPU using the CUDA programming language, namely the KD-tree and the SBVH. Our implementations have been based on the approach made available by NVIDIA which takes into account for the programming optimizations made possible by the latest version of CUDA and for the latest NVIDIA GPU architectures.","PeriodicalId":101990,"journal":{"name":"2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPACES.2016.7465401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We spot on the performance of two acceleration data structures for electromagnetic ray tracing purposes on GPU using the CUDA programming language, namely the KD-tree and the SBVH. Our implementations have been based on the approach made available by NVIDIA which takes into account for the programming optimizations made possible by the latest version of CUDA and for the latest NVIDIA GPU architectures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为什么SBVH在并行平台上优于KD-tree ?
我们在使用CUDA编程语言的GPU上发现了用于电磁射线跟踪目的的两种加速数据结构的性能,即KD-tree和SBVH。我们的实现基于NVIDIA提供的方法,该方法考虑到最新版本的CUDA和最新的NVIDIA GPU架构所实现的编程优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid simulation-driven design of compact photonic Y-junction by variable-dimensional sequential approximate optimization A null broadening beamforming method of virtual antenna array A novel structure and design of compact UWB slot antenna Modified elliptical nanoantenna for energy harvesting applications Discontinuous Galerkin — High order FDTD hybridization for scattering problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1