Deep Learning and Permutation Entropy in the Stratification of Patients with Chagas Disease

D. Cornejo, A. Ravelo-García, E. Alvarez, María Fernanda Rodríguez, Luz Alexandra Díaz, Victor Cabrera-Caso, Dante Condori-Merma, Miguel Vizcardo Cornejo
{"title":"Deep Learning and Permutation Entropy in the Stratification of Patients with Chagas Disease","authors":"D. Cornejo, A. Ravelo-García, E. Alvarez, María Fernanda Rodríguez, Luz Alexandra Díaz, Victor Cabrera-Caso, Dante Condori-Merma, Miguel Vizcardo Cornejo","doi":"10.22489/CinC.2022.311","DOIUrl":null,"url":null,"abstract":"Chagas disease is a life threatening illness that in the last decades was becoming a public health problem because of the change in the epidemiological pattern. It may be silent and asymptomatic in the chronic phase. Hence the necessity of the development of early markers. To achieve this, we propose a deep neural network architecture in order to classify 292 patients into three groups: The Control group with 83 volunteers, the CH1 group with 102 patients with positive serology and no cardiac involvement and the CH2 group with 107 patients with positive serology and incipient heart failure. The used data comes from 24-hour ECG, the RR intervals from each subject was divided in 288 frames of 5 minutes each. Then it was preprocessed using permutation entropy obtaining the circadian profile for each patient. And by applying PCA each patient ended up represented by a vector of 144 entries. This was in turn used for the training of the proposed NN architecture. The classification performed with 91% accuracy and an average of 92% precision, consisting in a great work of classification validated by the AUC in each ROC curve. As this results were obtained with a limited quantity of data, this study can be improved provided with more samples, making this model a tool for analyzing ECG in order to try to do an early evaluation and diagnosis of a cardiac compromise related to the generally silent chronic phase.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chagas disease is a life threatening illness that in the last decades was becoming a public health problem because of the change in the epidemiological pattern. It may be silent and asymptomatic in the chronic phase. Hence the necessity of the development of early markers. To achieve this, we propose a deep neural network architecture in order to classify 292 patients into three groups: The Control group with 83 volunteers, the CH1 group with 102 patients with positive serology and no cardiac involvement and the CH2 group with 107 patients with positive serology and incipient heart failure. The used data comes from 24-hour ECG, the RR intervals from each subject was divided in 288 frames of 5 minutes each. Then it was preprocessed using permutation entropy obtaining the circadian profile for each patient. And by applying PCA each patient ended up represented by a vector of 144 entries. This was in turn used for the training of the proposed NN architecture. The classification performed with 91% accuracy and an average of 92% precision, consisting in a great work of classification validated by the AUC in each ROC curve. As this results were obtained with a limited quantity of data, this study can be improved provided with more samples, making this model a tool for analyzing ECG in order to try to do an early evaluation and diagnosis of a cardiac compromise related to the generally silent chronic phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
查加斯病患者分层中的深度学习和排列熵
恰加斯病是一种危及生命的疾病,在过去几十年中,由于流行病学模式的变化,它已成为一个公共卫生问题。在慢性期可能是沉默和无症状的。因此,开发早期标记是必要的。为了实现这一点,我们提出了一个深度神经网络架构,将292名患者分为三组:对照组有83名志愿者,CH1组有102名血清学阳性且无心脏受累的患者,CH2组有107名血清学阳性且早期心力衰竭的患者。使用的数据来自24小时心电图,每个受试者的RR间隔被划分为288帧,每帧5分钟。然后使用排列熵对其进行预处理,获得每个患者的昼夜节律特征。通过应用PCA,每个患者最终由144个条目的向量表示。这反过来又用于训练所提出的神经网络架构。分类准确率为91%,平均精度为92%,通过各ROC曲线的AUC验证了分类的有效性。由于数据量有限,本研究可以通过更多的样本进行改进,使该模型成为心电图分析的工具,以便对与一般沉默的慢性期相关的心脏损害进行早期评估和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1