TV News Retrieval Based on Story Segmentation and Concept Association

Ruxandra Tapu, B. Mocanu, T. Zaharia
{"title":"TV News Retrieval Based on Story Segmentation and Concept Association","authors":"Ruxandra Tapu, B. Mocanu, T. Zaharia","doi":"10.1109/SITIS.2016.60","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel method for TV news retrieval. A first stage concerns a temporal segmentation into stories units. Then, for each story the most relevant concepts are extracted based on a multimodal fusion between visual and textual information. By analyzing the video stream, we perform global frame representation, image retrieval and re-ranking, in order to determine, with high confidence, the segments boundaries. In addition, by using the video subtitle, we identify the most relevant concepts / topics addressed in each independent segment. The framework is evaluated using one week video archive of France Television and 20 journals from NBC and CNN TV stations. For the temporal video segmentation, our system returns high precision and recall scores, superior to 90%. Regarding the topic association technique, we obtain a mean average precision score superior to 0.5.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we propose a novel method for TV news retrieval. A first stage concerns a temporal segmentation into stories units. Then, for each story the most relevant concepts are extracted based on a multimodal fusion between visual and textual information. By analyzing the video stream, we perform global frame representation, image retrieval and re-ranking, in order to determine, with high confidence, the segments boundaries. In addition, by using the video subtitle, we identify the most relevant concepts / topics addressed in each independent segment. The framework is evaluated using one week video archive of France Television and 20 journals from NBC and CNN TV stations. For the temporal video segmentation, our system returns high precision and recall scores, superior to 90%. Regarding the topic association technique, we obtain a mean average precision score superior to 0.5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于故事分割和概念关联的电视新闻检索
本文提出了一种新的电视新闻检索方法。第一个阶段涉及到故事单元的时间分割。然后,基于视觉和文本信息的多模态融合,对每个故事提取最相关的概念。通过分析视频流,我们执行全局帧表示、图像检索和重新排序,以高置信度确定片段边界。此外,通过使用视频字幕,我们确定每个独立部分中最相关的概念/主题。使用法国电视台的一周视频档案和NBC和CNN电视台的20份期刊对该框架进行了评估。对于时间视频分割,我们的系统返回高精确度和召回分数,优于90%。对于主题关联技术,我们获得了优于0.5的平均精度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consensus as a Nash Equilibrium of a Dynamic Game An Ontology-Based Augmented Reality Application Exploring Contextual Data of Cultural Heritage Sites All-in-One Mobile Outdoor Augmented Reality Framework for Cultural Heritage Sites 3D Visual-Based Human Motion Descriptors: A Review Tags and Information Recollection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1