Double-Via-Driven Standard Cell Library Design

Tsai-Ying Lin, Tsung-Han Lin, Hui-Hsiang Tung, Rung-Bin Lin
{"title":"Double-Via-Driven Standard Cell Library Design","authors":"Tsai-Ying Lin, Tsung-Han Lin, Hui-Hsiang Tung, Rung-Bin Lin","doi":"10.1145/1266366.1266627","DOIUrl":null,"url":null,"abstract":"Double-via placement is important for increasing chip manufacturing yield. Commercial tools and recent work have done a great job for it. However, they are found with a limited capability of placing more double vias (called vial) between metal 1 and metal 2. Such a limitation is caused by the way we design the standard cells and can not be resolved by developing better tools. This paper presents a double-via-driven standard cell library design approach to solving this problem. Compared to the results obtained using a commercial cell library, our library on average achieves 78% reduction in dead vias and 95% reduction in dead vials at the expense of 11% increase in total via count. We achieve these results (almost) at no extra cost in total cell area and wire length","PeriodicalId":298961,"journal":{"name":"2007 Design, Automation & Test in Europe Conference & Exhibition","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Design, Automation & Test in Europe Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1266366.1266627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Double-via placement is important for increasing chip manufacturing yield. Commercial tools and recent work have done a great job for it. However, they are found with a limited capability of placing more double vias (called vial) between metal 1 and metal 2. Such a limitation is caused by the way we design the standard cells and can not be resolved by developing better tools. This paper presents a double-via-driven standard cell library design approach to solving this problem. Compared to the results obtained using a commercial cell library, our library on average achieves 78% reduction in dead vias and 95% reduction in dead vials at the expense of 11% increase in total via count. We achieve these results (almost) at no extra cost in total cell area and wire length
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双孔驱动标准细胞库设计
双通孔布局对于提高芯片制造良率非常重要。商业工具和最近的工作为它做了很大的工作。然而,发现它们在金属1和金属2之间放置更多双孔(称为小瓶)的能力有限。这种限制是由我们设计标准细胞的方式造成的,不能通过开发更好的工具来解决。本文提出了一种双通孔驱动的标准单元库设计方法来解决这一问题。与使用商业细胞文库获得的结果相比,我们的文库平均减少了78%的死孔和95%的死瓶,而总孔数增加了11%。我们实现这些结果(几乎)没有额外的成本,总电池面积和导线长度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization-based Wideband Basis Functions for Efficient Interconnect Extraction System Level Assessment of an Optical NoC in an MPSoC Platform Modeling and Simulation to the Design of ΣΔ Fractional-N Frequency Synthesizer Tool-support for the analysis of hybrid systems and models Development of an ASIP Enabling Flows in Ethernet Access Using a Retargetable Compilation Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1