Smooth Actor-Critic Algorithm for End-to-End Autonomous Driving

Wenjie Song, Shixian Liu, Yujun Li, Yi Yang, C. Xiang
{"title":"Smooth Actor-Critic Algorithm for End-to-End Autonomous Driving","authors":"Wenjie Song, Shixian Liu, Yujun Li, Yi Yang, C. Xiang","doi":"10.23919/ACC45564.2020.9147960","DOIUrl":null,"url":null,"abstract":"For the intelligent sequential decision-making tasks like autonomous driving, decisions or actions made by the agent in a short period of time should be smooth enough or not too choppy. In order to help the agent learn smooth actions (steering, accelerating, braking) for autonomous driving, this paper proposes the smooth actor-critic algorithm for both deterministic policy and stochastic policy systems. Specifically, a regularization term is added to the objective function of actorcritic methods to constrain the difference between neighbouring actions in a small region without affecting the convergence performance of the whole system. Then, the theoretical analysis and proof for the modified methods are conducted so that it can be theoretically guaranteed in terms of iterative improvements. Moreover, experiments in different simulation systems also prove that the methods can generate much smoother actions and obtain more robust performance for reinforcement learning-based End-to-End autonomous driving.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC45564.2020.9147960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For the intelligent sequential decision-making tasks like autonomous driving, decisions or actions made by the agent in a short period of time should be smooth enough or not too choppy. In order to help the agent learn smooth actions (steering, accelerating, braking) for autonomous driving, this paper proposes the smooth actor-critic algorithm for both deterministic policy and stochastic policy systems. Specifically, a regularization term is added to the objective function of actorcritic methods to constrain the difference between neighbouring actions in a small region without affecting the convergence performance of the whole system. Then, the theoretical analysis and proof for the modified methods are conducted so that it can be theoretically guaranteed in terms of iterative improvements. Moreover, experiments in different simulation systems also prove that the methods can generate much smoother actions and obtain more robust performance for reinforcement learning-based End-to-End autonomous driving.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
端到端自动驾驶的平滑actor - critical算法
对于像自动驾驶这样的智能顺序决策任务,智能体在短时间内做出的决策或行动应该足够平稳或不太起伏。为了帮助智能体学习自动驾驶的平滑动作(转向、加速、制动),本文提出了确定性策略系统和随机策略系统的平滑行为者评价算法。具体而言,在行动者批评方法的目标函数中加入正则化项,在不影响整个系统收敛性能的前提下约束小区域内相邻动作之间的差异。然后对改进后的方法进行理论分析和论证,从迭代改进的角度对改进后的方法进行理论保证。此外,在不同仿真系统中的实验也证明了该方法可以生成更平滑的动作,并获得更鲁棒的基于强化学习的端到端自动驾驶性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metric Interval Temporal Logic based Reinforcement Learning with Runtime Monitoring and Self-Correction Boundary Control of Coupled Hyperbolic PDEs for Two-dimensional Vibration Suppression of a Deep-sea Construction Vessel Localizing Data Manipulators in Distributed Mode Shape Identification of Power Systems Boundary prescribed–time stabilization of a pair of coupled reaction–diffusion equations An Optimization-Based Iterative Learning Control Design Method for UAV’s Trajectory Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1