Effect of a Ceramic Matrix Composite Surface on Film Cooling

Peter H. Wilkins, S. Lynch, K. Thole, San Quach, T. Vincent, Dominic Mongillo
{"title":"Effect of a Ceramic Matrix Composite Surface on Film Cooling","authors":"Peter H. Wilkins, S. Lynch, K. Thole, San Quach, T. Vincent, Dominic Mongillo","doi":"10.1115/gt2021-59602","DOIUrl":null,"url":null,"abstract":"\n Ceramic matrix composite (CMC) parts create the opportunity for increased turbine entry temperatures within gas turbines. To achieve the highest temperatures possible, film cooling will play an important role in allowing turbine entry temperatures to exceed acceptable surface temperatures for CMC components, just as it does for the current generation of gas turbine components. Film cooling over a CMC surface introduces new challenges including roughness features downstream of the cooling holes and changes to the hole exit due to uneven surface topography. To better understand these impacts, this study presents flowfield and adiabatic effectiveness CFD for a 7-7-7 shaped film cooling hole at two CMC weave orientations. The CMC surface selected is a 5 Harness Satin weave pattern that is examined at two different orientations. To understand the ability of steady RANS to predict flow and convective heat transfer over a CMC surface, the weave surface is initially simulated without film and compared to previous experimental results. The simulation of the weave orientation of 0°, with fewer features projecting into the flow, matches fairly well to the experiment, and demonstrates a minimal impact on film cooling leading to only slightly lower adiabatic effectiveness compared to a smooth surface. However, the simulation of the 90° orientation with a large number of protruding features does not match the experimentally observed surface heat transfer. The additional protruding surface produces degraded film cooling performance at low blowing ratios but is less sensitive to blowing ratio, leading to improved relative performance at higher blowing ratios, particularly in regions far downstream of the hole.","PeriodicalId":204099,"journal":{"name":"Volume 5A: Heat Transfer — Combustors; Film Cooling","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: Heat Transfer — Combustors; Film Cooling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ceramic matrix composite (CMC) parts create the opportunity for increased turbine entry temperatures within gas turbines. To achieve the highest temperatures possible, film cooling will play an important role in allowing turbine entry temperatures to exceed acceptable surface temperatures for CMC components, just as it does for the current generation of gas turbine components. Film cooling over a CMC surface introduces new challenges including roughness features downstream of the cooling holes and changes to the hole exit due to uneven surface topography. To better understand these impacts, this study presents flowfield and adiabatic effectiveness CFD for a 7-7-7 shaped film cooling hole at two CMC weave orientations. The CMC surface selected is a 5 Harness Satin weave pattern that is examined at two different orientations. To understand the ability of steady RANS to predict flow and convective heat transfer over a CMC surface, the weave surface is initially simulated without film and compared to previous experimental results. The simulation of the weave orientation of 0°, with fewer features projecting into the flow, matches fairly well to the experiment, and demonstrates a minimal impact on film cooling leading to only slightly lower adiabatic effectiveness compared to a smooth surface. However, the simulation of the 90° orientation with a large number of protruding features does not match the experimentally observed surface heat transfer. The additional protruding surface produces degraded film cooling performance at low blowing ratios but is less sensitive to blowing ratio, leading to improved relative performance at higher blowing ratios, particularly in regions far downstream of the hole.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陶瓷基复合材料表面对薄膜冷却的影响
陶瓷基复合材料(CMC)部件为燃气轮机内增加涡轮入口温度创造了机会。为了达到可能的最高温度,膜冷却将在允许涡轮入口温度超过CMC组件可接受的表面温度方面发挥重要作用,就像它对当前一代燃气轮机组件所做的那样。CMC表面的膜冷却带来了新的挑战,包括冷却孔下游的粗糙度特征,以及由于表面地形不均匀而导致的孔出口变化。为了更好地理解这些影响,本研究对两种CMC编织方向下的7-7-7型膜冷却孔进行了流场和绝热效率CFD计算。选择的CMC表面是在两个不同的方向上检查的5束缎面编织图案。为了了解稳定RANS预测CMC表面流动和对流传热的能力,我们首先模拟了没有膜的编织表面,并与之前的实验结果进行了比较。0°编织方向的模拟结果与实验结果吻合得相当好,并且表明与光滑表面相比,0°编织方向对膜冷却的影响最小,导致绝热效率略低。然而,对具有大量突出特征的90°取向的模拟与实验观察到的表面传热不匹配。在低吹气比下,额外的突出表面会导致气膜冷却性能下降,但对吹气比不太敏感,因此在高吹气比下,特别是在孔的远下游区域,相对性能得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Purge Flow Parameters on Heat Transfer and Film Cooling in Turbine Center Frames Uncertainty Analysis of Film Cooling of Fan-Shaped Holes on a Stator Vane Under Realistic Inlet Conditions Implementation of Vortex Generator and Ramp to Improve Film Cooling Effectiveness on Blade Endwall Coupling of Mainstream Velocity Fluctuations With Plenum Fed Film Cooling Jets An Experimental Study of Turbine Vane Film Cooling Using Endoscope-Based PSP Technique in a Single-Passage Wind Tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1