Accumulation-mode GAA Si NW nFET with sub-5 nm cross-section and high uniaxial tensile strain

M. Najmzadeh, D. Bouvet, W. Grabinski, A. Ionescu
{"title":"Accumulation-mode GAA Si NW nFET with sub-5 nm cross-section and high uniaxial tensile strain","authors":"M. Najmzadeh, D. Bouvet, W. Grabinski, A. Ionescu","doi":"10.1109/ESSDERC.2011.6044172","DOIUrl":null,"url":null,"abstract":"In this work we report dense arrays of highly doped gate-all-around Si nanowire accumulation-mode nMOS-FETs with sub-5 nm cross-sections. The integration of local stressor technologies (both local oxidation and metal-gate strain) to achieve ≥ 2.5 GPa uniaxial tensile stress is reported for the first time. The deeply scaled Si nanowire shows low-field electron mobility of 332 cm2/V.s at room temperature, 32% higher than bulk mobility at the equivalent high channel doping. The conduction mechanism as well as high temperature performance was studied based on the electrical characteristics from room temperature up to ≈400 K and a VTH drift of −1.72 mV/K, VFB drift of −3.04 mV/K and an ion impurity scattering-based mobility reduction were observed.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"19 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this work we report dense arrays of highly doped gate-all-around Si nanowire accumulation-mode nMOS-FETs with sub-5 nm cross-sections. The integration of local stressor technologies (both local oxidation and metal-gate strain) to achieve ≥ 2.5 GPa uniaxial tensile stress is reported for the first time. The deeply scaled Si nanowire shows low-field electron mobility of 332 cm2/V.s at room temperature, 32% higher than bulk mobility at the equivalent high channel doping. The conduction mechanism as well as high temperature performance was studied based on the electrical characteristics from room temperature up to ≈400 K and a VTH drift of −1.72 mV/K, VFB drift of −3.04 mV/K and an ion impurity scattering-based mobility reduction were observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有亚5 nm截面和高单轴拉伸应变的累积模式GAA Si NW nFET
在这项工作中,我们报道了高掺杂栅极全能硅纳米线积累模式nmos - fet的密集阵列,其横截面为亚5nm。结合局部应力源技术(局部氧化和金属栅应变)实现≥2.5 GPa单轴拉伸应力是首次报道。深度缩放的Si纳米线显示出332 cm2/V的低场电子迁移率。S在室温下,比等效高通道掺杂下的块体迁移率高32%。基于室温至≈400 K的电特性,研究了导电机理和高温性能,观察到VTH漂移为- 1.72 mV/K, VFB漂移为- 3.04 mV/K,离子杂质散射导致迁移率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low cost multi quantum SiGe/Si/Schottky structure for high performance IR detectors Accurate measurements of the charge pumping current due to individual MOS interface traps and interactions in the carrier capture/emission processes Extracting the conduction band offset in strained FinFETs from subthreshold-current measurements Variability analysis of scaled poly-Si channel FinFETs and tri-gate flash memories for high density and low cost stacked 3D-memory application EM-TCAD solving from 0–100 THz: A new implementation of an electromagnetic solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1