Hybrid cluster of multicore CPUs and GPUs for accelerating hyperspectral image hierarchical segmentation

M. Hossam, H. M. Ebied, M. Abdel-Aziz
{"title":"Hybrid cluster of multicore CPUs and GPUs for accelerating hyperspectral image hierarchical segmentation","authors":"M. Hossam, H. M. Ebied, M. Abdel-Aziz","doi":"10.1109/ICCES.2013.6707216","DOIUrl":null,"url":null,"abstract":"Hierarchical image segmentation is a well-known image analysis and clustering method that is used for hyperspectral image analysis. This paper introduces a parallel implementation of hybrid CPU/GPU for the Recursive Hierarchical Segmentation method (RHSEG) algorithm, in which CPU and GPU work cooperatively and seamlessly, combining benefits of both platforms. RHSEG is a method developed by National Aeronautics and Space Administration (NASA) which is more efficient than other traditional methods for high spatial resolution images. The RHSEG algorithm is also implemented on both GPU cluster and hybrid CPU/GPU cluster and the results are compared with the hybrid CPU/GPU implementation. For single hybrid computational node of 8 cores, a speedup of 6x is achieved using both CPU and GPU. On a computer cluster of 16 hybrid CPU/GPU nodes, an average speed up of 112x times is achieved over the sequential CPU implementation.","PeriodicalId":277807,"journal":{"name":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2013.6707216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hierarchical image segmentation is a well-known image analysis and clustering method that is used for hyperspectral image analysis. This paper introduces a parallel implementation of hybrid CPU/GPU for the Recursive Hierarchical Segmentation method (RHSEG) algorithm, in which CPU and GPU work cooperatively and seamlessly, combining benefits of both platforms. RHSEG is a method developed by National Aeronautics and Space Administration (NASA) which is more efficient than other traditional methods for high spatial resolution images. The RHSEG algorithm is also implemented on both GPU cluster and hybrid CPU/GPU cluster and the results are compared with the hybrid CPU/GPU implementation. For single hybrid computational node of 8 cores, a speedup of 6x is achieved using both CPU and GPU. On a computer cluster of 16 hybrid CPU/GPU nodes, an average speed up of 112x times is achieved over the sequential CPU implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于加速高光谱图像分层分割的多核cpu和gpu混合集群
分层图像分割是一种众所周知的用于高光谱图像分析的图像分析和聚类方法。本文介绍了一种用于递归分层分割(RHSEG)算法的混合CPU/GPU并行实现,使CPU和GPU协同无缝工作,结合了两个平台的优势。RHSEG是美国国家航空航天局(NASA)开发的一种比其他传统方法更高效的高空间分辨率图像提取方法。在GPU集群和CPU/GPU混合集群上分别实现了RHSEG算法,并与CPU/GPU混合集群的实现结果进行了比较。对于单个8核混合计算节点,同时使用CPU和GPU可实现6倍的加速。在16个混合CPU/GPU节点的计算机集群上,与顺序CPU实现相比,平均速度提高了112倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensemble classifiers for biomedical data: Performance evaluation Hardware architecture dedicated for arithmetic mean filtration implemented in FPGA Non-fragile bilinear state feedback controller for a class of MIMO bilinear systems Learning cross-domain social knowledge from cognitive scripts Design and implementation of course timetabling system based on genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1