Memristor models for synapse component

Mouna Elhamdaoui, Khaoula Mbarek, Faten Ouaja Rziga, K. Besbes
{"title":"Memristor models for synapse component","authors":"Mouna Elhamdaoui, Khaoula Mbarek, Faten Ouaja Rziga, K. Besbes","doi":"10.1109/DTS52014.2021.9497940","DOIUrl":null,"url":null,"abstract":"The memristor, the fourth passive circuit element, has exhibited resistance switching mechanism, which can be used in several applications such as nonvolatile memory, digital logic circuits, and neuromorphic systems. The switching mechanism in a Ta2O5-RRAM device is achieved by conductive filament (CF) modulation that provides a suitable analog switching for the electronic synapses. In this paper, we analyze and discuss four different memristor models to identify which of them can achieve sufficient accuracy compared to the physical Ta2O5-RRAM device, in order to be implemented as a synapse. These examined models are the linear ion drift (HP) model, the Voltage Threshold Adaptive Memristor (VTEAM) model, the Memdiode model and the Enhanced Generalized Memristor (EGM) model. Thus, we present the simulation results of each model and we compare its switching characteristics with the experimental characteristics. This study allows us to select the most appropriate memristor model for emulating the synaptic functions.","PeriodicalId":158426,"journal":{"name":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTS52014.2021.9497940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The memristor, the fourth passive circuit element, has exhibited resistance switching mechanism, which can be used in several applications such as nonvolatile memory, digital logic circuits, and neuromorphic systems. The switching mechanism in a Ta2O5-RRAM device is achieved by conductive filament (CF) modulation that provides a suitable analog switching for the electronic synapses. In this paper, we analyze and discuss four different memristor models to identify which of them can achieve sufficient accuracy compared to the physical Ta2O5-RRAM device, in order to be implemented as a synapse. These examined models are the linear ion drift (HP) model, the Voltage Threshold Adaptive Memristor (VTEAM) model, the Memdiode model and the Enhanced Generalized Memristor (EGM) model. Thus, we present the simulation results of each model and we compare its switching characteristics with the experimental characteristics. This study allows us to select the most appropriate memristor model for emulating the synaptic functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突触组件的忆阻器模型
忆阻器是第四种无源电路元件,具有电阻开关机制,可用于非易失性存储器、数字逻辑电路和神经形态系统等多种应用。Ta2O5-RRAM器件中的开关机制是通过导电灯丝(CF)调制实现的,该调制为电子突触提供了合适的模拟开关。在本文中,我们分析和讨论了四种不同的忆阻器模型,以确定与物理Ta2O5-RRAM器件相比,哪一种模型可以达到足够的精度,以便作为突触实现。这些模型是线性离子漂移(HP)模型,电压阈值自适应忆阻器(VTEAM)模型,Memdiode模型和增强型广义忆阻器(EGM)模型。因此,我们给出了每个模型的仿真结果,并将其开关特性与实验特性进行了比较。本研究为我们选择最合适的忆阻器模型来模拟突触功能提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power (4nW), 0.6V Fully-Tunable Bump Circuit operating in Sub-threshold regime Development of graphene oxide-based fluorescent sensing nanoplatform for microRNA-10b detection Towards Autonomous Node Sensors: Green Versus RF Energy Harvesting Slicing Optimization based on Machine Learning Tool for Industrial IoT 4.0 Quantum well width and barrier Thickness effects on the perpendicular transport in polar and non-polar oriented AlGaN/GaN Resonant Tunneling Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1