Estimation of NPP in Xuzhou Based on Improved CASA Model and Remote Sensing Data

Di Geng, Liang Liang, Jiahui Wang, Ting Huang, Luo Xiang, Shuguo Wang
{"title":"Estimation of NPP in Xuzhou Based on Improved CASA Model and Remote Sensing Data","authors":"Di Geng, Liang Liang, Jiahui Wang, Ting Huang, Luo Xiang, Shuguo Wang","doi":"10.1109/Agro-Geoinformatics.2019.8820531","DOIUrl":null,"url":null,"abstract":"In order to explore the distribution and change of NPP at urban scale, and in view of the high spatial heterogeneity of cities, this paper improves the CASA model, estimates the NPP in the central urban area of Xuzhou in March 2018 based on MODIS and Landsat 8 remote sensing data, analyses the spatial distribution characteristics of NPP in the study area and compares the NPP estimates under different models. The results show that: 1) the NPP values of the eastern, southern parts of the study area are higher, while the NPP values of the western part of the central region are lower, and the NPP values of the outward parts of the central region tend to increase gradually; 2) without considering the construction land, the NPP values of cultivated land in the study area are the highest, followed by grassland, forest land and water body, and the NPP values of unused land are the lowest; 3) Compared with CASA model, the improved CASA model is better. It highlights the changes in the distribution of construction land, and reflects the impact of construction land on the results of NPP estimation at the urban scale. In addition, under this model, NPP estimation based on Landsat 8 remote sensing data is more advantageous in urban scale, and the estimation results are more accurate.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to explore the distribution and change of NPP at urban scale, and in view of the high spatial heterogeneity of cities, this paper improves the CASA model, estimates the NPP in the central urban area of Xuzhou in March 2018 based on MODIS and Landsat 8 remote sensing data, analyses the spatial distribution characteristics of NPP in the study area and compares the NPP estimates under different models. The results show that: 1) the NPP values of the eastern, southern parts of the study area are higher, while the NPP values of the western part of the central region are lower, and the NPP values of the outward parts of the central region tend to increase gradually; 2) without considering the construction land, the NPP values of cultivated land in the study area are the highest, followed by grassland, forest land and water body, and the NPP values of unused land are the lowest; 3) Compared with CASA model, the improved CASA model is better. It highlights the changes in the distribution of construction land, and reflects the impact of construction land on the results of NPP estimation at the urban scale. In addition, under this model, NPP estimation based on Landsat 8 remote sensing data is more advantageous in urban scale, and the estimation results are more accurate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进CASA模型和遥感数据的徐州市NPP估算
为探索城市尺度下NPP的分布与变化,针对城市空间异质性较高的特点,本文对CASA模型进行改进,基于MODIS和Landsat 8遥感数据估算了2018年3月徐州市中心城区NPP,分析了研究区NPP的空间分布特征,并对不同模型下的NPP估算结果进行了比较。结果表明:1)研究区东部、南部的NPP值较高,中部西部的NPP值较低,中部向外的NPP值有逐渐增大的趋势;2)在不考虑建设用地的情况下,研究区耕地的NPP值最高,其次是草地、林地和水体,未利用地的NPP值最低;3)与CASA模型相比,改进的CASA模型效果更好。突出了建设用地分布的变化,反映了城市尺度上建设用地对NPP估算结果的影响。此外,在该模型下,基于Landsat 8遥感数据的NPP估算在城市尺度上更具优势,估算结果更加准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving System of Rural Land Contractual Management Right Data using Multithreading and Distributed Storage Technology Winter Wheat Drought Monitoring with Multi-temporal MODIS data and AquaCrop Model—A Case Study in Henan Province Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems Research on Cotton Information Extraction Based on Sentinel-2 Time Series Analysis Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1