Information fusion with Bayesian networks for monitoring human fatigue

Peilin Lan, Q. Ji, C. Looney
{"title":"Information fusion with Bayesian networks for monitoring human fatigue","authors":"Peilin Lan, Q. Ji, C. Looney","doi":"10.1109/ICIF.2002.1021200","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a probabilistic model based on Bayesian networks (BNs) for inferring human fatigue by integrating information from various visual cues and certain relevant contextual information. First, we briefly review the modern physiological and behavioral studies on human fatigue to identify the major causes for human fatigue and the significant factors affecting fatigue. These factors are then extracted from those studies and form the contextual information variables in our fatigue model. Visual parameters, typically characterizing the cognitive states of a person including parameters related to eyelid movement, gaze, head movement, and facial expression, serve as the sensory observations in the fatigue model. The fatigue model is subsequently parameterized based on the statistics extracted from recent studies on fatigue and on our subjective knowledge. Such a model provides mathematically coherent and sound basis for systematically aggregating visual evidences from different sources, augmented with relevant contextual information. The inference results produced by running the fatigue model using Microsoft BNs engine MSBNX demonstrate the utility of the proposed framework for predicting and modeling fatigue.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this paper, we introduce a probabilistic model based on Bayesian networks (BNs) for inferring human fatigue by integrating information from various visual cues and certain relevant contextual information. First, we briefly review the modern physiological and behavioral studies on human fatigue to identify the major causes for human fatigue and the significant factors affecting fatigue. These factors are then extracted from those studies and form the contextual information variables in our fatigue model. Visual parameters, typically characterizing the cognitive states of a person including parameters related to eyelid movement, gaze, head movement, and facial expression, serve as the sensory observations in the fatigue model. The fatigue model is subsequently parameterized based on the statistics extracted from recent studies on fatigue and on our subjective knowledge. Such a model provides mathematically coherent and sound basis for systematically aggregating visual evidences from different sources, augmented with relevant contextual information. The inference results produced by running the fatigue model using Microsoft BNs engine MSBNX demonstrate the utility of the proposed framework for predicting and modeling fatigue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于贝叶斯网络的疲劳监测信息融合
本文介绍了一种基于贝叶斯网络(BNs)的概率模型,该模型通过整合各种视觉线索信息和特定的相关上下文信息来推断人体疲劳。首先,我们简要回顾了现代人体疲劳的生理和行为研究,以确定人体疲劳的主要原因和影响疲劳的重要因素。然后从这些研究中提取这些因素,形成我们疲劳模型中的上下文信息变量。视觉参数,通常表征一个人的认知状态,包括与眼睑运动、凝视、头部运动和面部表情相关的参数,作为疲劳模型中的感官观察。然后,根据从最近的疲劳研究中提取的统计数据和我们的主观知识,对疲劳模型进行参数化。这种模型为系统地汇总来自不同来源的视觉证据提供了数学上连贯和健全的基础,并增加了相关的上下文信息。利用Microsoft BNs引擎MSBNX运行疲劳模型所产生的推理结果证明了所提出的框架在疲劳预测和建模方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1