Persuasion by Dimension Reduction

S. Malamud, Andreas Schrimpf
{"title":"Persuasion by Dimension Reduction","authors":"S. Malamud, Andreas Schrimpf","doi":"10.2139/ssrn.3946389","DOIUrl":null,"url":null,"abstract":"How should an agent (the sender) observing multi-dimensional data (the state vector) persuade another agent to take the desired action? We show that it is always optimal for the sender to perform a (non-linear) dimension reduction by projecting the state vector onto a lower-dimensional object that we call the \"optimal information manifold.\" We characterize geometric properties of this manifold and link them to the sender's preferences. Optimal policy splits information into \"good\" and \"bad\" components. When the sender's marginal utility is linear, it is always optimal to reveal the full magnitude of good information. In contrast, with concave marginal utility, optimal information design conceals the extreme realizations of good information and only reveals its direction (sign). We illustrate these effects by explicitly solving several multi-dimensional Bayesian persuasion problems.","PeriodicalId":322168,"journal":{"name":"Human Behavior & Game Theory eJournal","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Behavior & Game Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3946389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

How should an agent (the sender) observing multi-dimensional data (the state vector) persuade another agent to take the desired action? We show that it is always optimal for the sender to perform a (non-linear) dimension reduction by projecting the state vector onto a lower-dimensional object that we call the "optimal information manifold." We characterize geometric properties of this manifold and link them to the sender's preferences. Optimal policy splits information into "good" and "bad" components. When the sender's marginal utility is linear, it is always optimal to reveal the full magnitude of good information. In contrast, with concave marginal utility, optimal information design conceals the extreme realizations of good information and only reveals its direction (sign). We illustrate these effects by explicitly solving several multi-dimensional Bayesian persuasion problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降维说服
观察多维数据(状态向量)的代理(发送方)应该如何说服另一个代理采取期望的行动?我们表明,对于发送者来说,通过将状态向量投射到我们称之为“最优信息流形”的低维对象上来执行(非线性)降维总是最优的。我们描述了这个流形的几何属性,并将它们与发送者的偏好联系起来。最优策略将信息分成“好”和“坏”两部分。当发送者的边际效用是线性的,它总是最优的揭示所有的好信息。而在边际效用为凹的情况下,信息优化设计隐藏了好信息的极端实现,只显示了它的方向(符号)。我们通过明确地解决几个多维贝叶斯说服问题来说明这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral Home Bias in a Real Market Setting: Evidence from Online Sports Betting Persuasion by Dimension Reduction Fear and Promise of the Unknown: How Losses Discourage and Promote Exploration Do Investors Pay Less Attention to Women (Fund Managers)? Probability Weighting and the Newsvendor Problem: Theory and Evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1