Emerging properties from Bayesian Non-Parametric for multiple clustering: Application for multi-view image dataset

Reda Khoufache, M. Dilmi, Hanene Azzag, Etienne Gofinnet, M. Lebbah
{"title":"Emerging properties from Bayesian Non-Parametric for multiple clustering: Application for multi-view image dataset","authors":"Reda Khoufache, M. Dilmi, Hanene Azzag, Etienne Gofinnet, M. Lebbah","doi":"10.1109/ICDMW58026.2022.00013","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) in supermarkets is moving fast with the recent advances in deep learning. One important project in the retail sector is the development of AI solutions for smart stores, mainly to improve product recognition. In this paper, we present a new framework to address the multi-view image classification using multiple clustering. The proposed framework combines a pre-trained Vision Transformer with a Bayesian Non-Parametric multiple clustering. In this work, we propose an M CM C- based inference approach to learn the column-partition and the row-partitions. This method infers multiple clustering solutions and allows to find automatically the number of clusters. Our method provides interesting results on a multi-view image dataset and emphasizes, on one hand, the power of pre-trained Vision Transformers combined with the multiple clustering algorithm, on the other hand, the usefulness of the Bayesian Non-Parametric modeling, which automatically performs a model selection.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) in supermarkets is moving fast with the recent advances in deep learning. One important project in the retail sector is the development of AI solutions for smart stores, mainly to improve product recognition. In this paper, we present a new framework to address the multi-view image classification using multiple clustering. The proposed framework combines a pre-trained Vision Transformer with a Bayesian Non-Parametric multiple clustering. In this work, we propose an M CM C- based inference approach to learn the column-partition and the row-partitions. This method infers multiple clustering solutions and allows to find automatically the number of clusters. Our method provides interesting results on a multi-view image dataset and emphasizes, on one hand, the power of pre-trained Vision Transformers combined with the multiple clustering algorithm, on the other hand, the usefulness of the Bayesian Non-Parametric modeling, which automatically performs a model selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯非参数多聚类的新特性:多视图图像数据集的应用
随着深度学习的最新进展,超市中的人工智能(AI)正在迅速发展。零售领域的一个重要项目是为智能商店开发人工智能解决方案,主要是为了提高产品识别。本文提出了一种新的基于多聚类的多视图图像分类框架。该框架将预训练的视觉转换器与贝叶斯非参数多聚类相结合。在这项工作中,我们提出了一种基于M - CM - C的推理方法来学习列分区和行分区。该方法推断出多个聚类解决方案,并允许自动查找聚类的数量。我们的方法在多视图图像数据集上提供了有趣的结果,并且一方面强调了预先训练的视觉变形器与多聚类算法相结合的强大功能,另一方面强调了贝叶斯非参数建模的有用性,该建模可以自动执行模型选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1