Flexible weighted neuro-fuzzy systems

L. Rutkowski, K. Cpałka
{"title":"Flexible weighted neuro-fuzzy systems","authors":"L. Rutkowski, K. Cpałka","doi":"10.1109/ICONIP.2002.1198995","DOIUrl":null,"url":null,"abstract":"In the paper we study new neuro-fuzzy systems. They are called the OR-type fuzzy inference systems (NFIS). Based on the input-output data we learn not only parameters of membership functions but also a type of the systems and aggregating parameters. We propose the weighted T-norm and S-norm to neuro-fuzzy inference systems. Our approach introduces more flexibility to the structure and learning of neuro-fuzzy systems.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

In the paper we study new neuro-fuzzy systems. They are called the OR-type fuzzy inference systems (NFIS). Based on the input-output data we learn not only parameters of membership functions but also a type of the systems and aggregating parameters. We propose the weighted T-norm and S-norm to neuro-fuzzy inference systems. Our approach introduces more flexibility to the structure and learning of neuro-fuzzy systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性加权神经模糊系统
本文研究了一种新的神经模糊系统。它们被称为or型模糊推理系统(NFIS)。根据输入输出数据,我们不仅学习了隶属函数的参数,还学习了系统的类型和聚合参数。我们提出了神经模糊推理系统的加权t范数和s范数。我们的方法为神经模糊系统的结构和学习引入了更多的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1