First Hop Mobile Offloading of DAG Computations

Vincenzo De Maio, I. Brandić
{"title":"First Hop Mobile Offloading of DAG Computations","authors":"Vincenzo De Maio, I. Brandić","doi":"10.1109/CCGRID.2018.00023","DOIUrl":null,"url":null,"abstract":"In recent years, Mobile Cloud Computing (MCC) has been proposed to increase battery lifetime of mobile devices. However, offloading on Cloud infrastructures may be infeasible for latency critical applications, due to the geographical distribution of Cloud data centers that increases offloading time. In this paper, we investigate the use of Mobile Edge Cloud Offloading (MECO), namely offloading to a heterogeneous computing infrastructure featuring both Cloud and Edge nodes, where Edge nodes are geographically closer to the mobile device. We evaluate improvements of MECO in comparison with MCC for objectives such as applications' runtime, mobile device battery lifetime and cost for the user. Afterwards, we propose the Edge Cloud Heuristic Offloading (ECHO) approach to find a trade-off solution between the aforementioned objectives, according to user's preferences. We evaluate our approach by simulating offloading of Directed Acyclic Graphs (DAGs) representing mobile applications through the use of Monte-Carlo simulations. The results show that (1) MECO can reduce application runtime by up to 70.7% and cost by up to 70.6% in comparison to MCC and (2) ECHO allows user to select a trade-off solution with at most 18% MAPE for runtime, 16% for cost and 0.5% for battery lifetime, according to user's preferences.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

Abstract

In recent years, Mobile Cloud Computing (MCC) has been proposed to increase battery lifetime of mobile devices. However, offloading on Cloud infrastructures may be infeasible for latency critical applications, due to the geographical distribution of Cloud data centers that increases offloading time. In this paper, we investigate the use of Mobile Edge Cloud Offloading (MECO), namely offloading to a heterogeneous computing infrastructure featuring both Cloud and Edge nodes, where Edge nodes are geographically closer to the mobile device. We evaluate improvements of MECO in comparison with MCC for objectives such as applications' runtime, mobile device battery lifetime and cost for the user. Afterwards, we propose the Edge Cloud Heuristic Offloading (ECHO) approach to find a trade-off solution between the aforementioned objectives, according to user's preferences. We evaluate our approach by simulating offloading of Directed Acyclic Graphs (DAGs) representing mobile applications through the use of Monte-Carlo simulations. The results show that (1) MECO can reduce application runtime by up to 70.7% and cost by up to 70.6% in comparison to MCC and (2) ECHO allows user to select a trade-off solution with at most 18% MAPE for runtime, 16% for cost and 0.5% for battery lifetime, according to user's preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第一跳移动卸载的DAG计算
近年来,移动云计算(MCC)被提出,以提高移动设备的电池寿命。但是,由于云数据中心的地理分布增加了卸载时间,因此在云基础设施上卸载对于延迟关键型应用程序可能是不可行的。在本文中,我们研究了移动边缘云卸载(MECO)的使用,即卸载到具有云和边缘节点的异构计算基础设施,其中边缘节点在地理上更靠近移动设备。我们在应用程序运行时间、移动设备电池寿命和用户成本等方面对MECO与MCC的改进进行了评估。然后,我们提出了边缘云启发式卸载(ECHO)方法,根据用户的偏好在上述目标之间找到权衡解决方案。我们通过使用蒙特卡罗模拟模拟表示移动应用程序的有向无环图(dag)的卸载来评估我们的方法。结果表明:(1)与MCC相比,MECO可以将应用程序运行时间减少70.7%,成本减少70.6%;(2)ECHO允许用户根据用户的喜好选择一个折衷解决方案,运行时间MAPE最多为18%,成本为16%,电池寿命为0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1