{"title":"Floating-gate capacitance sensor array for cell viability monitoring","authors":"T. Datta, E. Naviasky, P. Abshire","doi":"10.1109/BioCAS.2013.6679641","DOIUrl":null,"url":null,"abstract":"This paper describes a new design for a capacitance sensor array to monitor cell viability that uses floating gate compensation techniques to mitigate device mismatch. The measurement is carried out using sensor evaluation modules that employ a charge based capacitance measurement technique to quantify differential capacitance at the sensor pixel elements. Previous results from compensated structures and new data collected from in-vitro cell culture on the surface of an uncompensated array were used to inform the design of a new array. We examine array level architectural tradeoffs and sensing electrode configurations in order to design a high density sensor array with minimal sources of variability.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes a new design for a capacitance sensor array to monitor cell viability that uses floating gate compensation techniques to mitigate device mismatch. The measurement is carried out using sensor evaluation modules that employ a charge based capacitance measurement technique to quantify differential capacitance at the sensor pixel elements. Previous results from compensated structures and new data collected from in-vitro cell culture on the surface of an uncompensated array were used to inform the design of a new array. We examine array level architectural tradeoffs and sensing electrode configurations in order to design a high density sensor array with minimal sources of variability.