Qiaoling Liao , Xinle Cheng , Tong Lan , Xiaokuan Guo , Zilong Su , Xiaoxiao An , Yali Zheng , Haitao Cui , Weiren Wu , Tao Lan
{"title":"OsSPL10 controls trichome development by interacting with OsWOX3B at both transcription and protein levels in rice (Oryza sativa L.)","authors":"Qiaoling Liao , Xinle Cheng , Tong Lan , Xiaokuan Guo , Zilong Su , Xiaoxiao An , Yali Zheng , Haitao Cui , Weiren Wu , Tao Lan","doi":"10.1016/j.cj.2023.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>Plant trichomes are a specialized cellular tissue that functions in resistance to biotic and abiotic stresses. In rice, three transcription-factor genes: <em>OsWOX3B</em>, <em>HL6</em>, and <em>OsSPL10</em>, have been found to control trichome development. Although studies have shown interactions between the three genes, their full relationship in trichome development is unclear. We found that the expression levels of <em>OsWOX3B</em> and <em>HL6</em> were both reduced in <em>OsSPL10</em>-knockout plants but increased in <em>OsSPL10</em>-overexpression plants, suggesting that <em>OsSPL10</em> positively regulates their expression. Physical interaction between OsSPL10 and OsWOX3B was found both <em>in vivo</em> and <em>in vitro</em> and attenuated their abilities to bind to the promoter of <em>HL6</em> to activate its transcription. This mechanism may regulate trichome length by adjusting the expression of <em>HL6</em>. A rice gene network regulating trichome development is proposed.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 6","pages":"Pages 1711-1718"},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123000879/pdfft?md5=9370f200a3ca61a8c73466244f433bf3&pid=1-s2.0-S2214514123000879-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000879","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant trichomes are a specialized cellular tissue that functions in resistance to biotic and abiotic stresses. In rice, three transcription-factor genes: OsWOX3B, HL6, and OsSPL10, have been found to control trichome development. Although studies have shown interactions between the three genes, their full relationship in trichome development is unclear. We found that the expression levels of OsWOX3B and HL6 were both reduced in OsSPL10-knockout plants but increased in OsSPL10-overexpression plants, suggesting that OsSPL10 positively regulates their expression. Physical interaction between OsSPL10 and OsWOX3B was found both in vivo and in vitro and attenuated their abilities to bind to the promoter of HL6 to activate its transcription. This mechanism may regulate trichome length by adjusting the expression of HL6. A rice gene network regulating trichome development is proposed.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.