Visualizing diffusion tensor imaging data with merging ellipsoids

Wei Chen, Song Zhang, S. Correia, D. Tate
{"title":"Visualizing diffusion tensor imaging data with merging ellipsoids","authors":"Wei Chen, Song Zhang, S. Correia, D. Tate","doi":"10.1109/PACIFICVIS.2009.4906849","DOIUrl":null,"url":null,"abstract":"Diffusion tensor fields reveal the underlying anatomical structures in biological tissues such as neural fibers in the brain. Most current methods for visualizing the diffusion tensor field can be categorized into two classes: integral curves and glyphs. Integral curves are continuous and represent the underlying fiber structures, but are prone to integration error and loss of local information. Glyphs are useful for representing local tensor information, but do not convey the connectivity in the anatomical structures well. We introduce a simple yet effective visualization technique that extends the streamball method in flow visualization to tensor ellipsoids. Each tensor ellipsoid represents a local tensor, and either blends with neighboring tensors or breaks away from them depending on their orientations and anisotropies. The resulting visualization shows the connectivity information in the underlying anatomy while characterizing the local tenors in detail. By interactively changing an iso-value parameter, users can examine the diffusion tensor field in the entire spectrum between the continuous integral curves and the discrete glyphs. Expert evaluation indicates that this method conveys very useful visual information about local anisotropy in white matter fibers. Such information was previously unavailable in tractography models. Our method provides a visual tool for assessing variability in DTI fiber tract integrity and its relation to function.","PeriodicalId":133992,"journal":{"name":"2009 IEEE Pacific Visualization Symposium","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2009.4906849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Diffusion tensor fields reveal the underlying anatomical structures in biological tissues such as neural fibers in the brain. Most current methods for visualizing the diffusion tensor field can be categorized into two classes: integral curves and glyphs. Integral curves are continuous and represent the underlying fiber structures, but are prone to integration error and loss of local information. Glyphs are useful for representing local tensor information, but do not convey the connectivity in the anatomical structures well. We introduce a simple yet effective visualization technique that extends the streamball method in flow visualization to tensor ellipsoids. Each tensor ellipsoid represents a local tensor, and either blends with neighboring tensors or breaks away from them depending on their orientations and anisotropies. The resulting visualization shows the connectivity information in the underlying anatomy while characterizing the local tenors in detail. By interactively changing an iso-value parameter, users can examine the diffusion tensor field in the entire spectrum between the continuous integral curves and the discrete glyphs. Expert evaluation indicates that this method conveys very useful visual information about local anisotropy in white matter fibers. Such information was previously unavailable in tractography models. Our method provides a visual tool for assessing variability in DTI fiber tract integrity and its relation to function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合并椭球的扩散张量成像数据可视化
扩散张量场揭示了生物组织的潜在解剖结构,如大脑中的神经纤维。目前扩散张量场的可视化方法主要分为积分曲线和符号两类。积分曲线是连续的,代表了底层的光纤结构,但容易产生积分误差和局部信息的丢失。符号对于表示局部张量信息是有用的,但不能很好地表达解剖结构中的连通性。我们介绍了一种简单而有效的可视化技术,将流球方法扩展到张量椭球。每个张量椭球代表一个局部张量,根据邻近张量的方向和各向异性,它要么与邻近张量混合,要么与邻近张量分离。由此产生的可视化显示了底层解剖结构中的连通性信息,同时详细描述了局部音高。通过交互改变等值参数,用户可以在连续积分曲线和离散符号之间的整个光谱中检查扩散张量场。专家评价表明,这种方法传达了白质纤维局部各向异性的非常有用的视觉信息。这些信息以前在牵引造影模型中是无法获得的。我们的方法为评估DTI纤维束完整性的变异性及其与功能的关系提供了一个可视化的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Synthesis of dawsonite: A method to treat the etching waste streams of the aluminium anodising industry
IF 12.8 1区 环境科学与生态学Water ResearchPub Date : 2005-05-01 DOI: 10.1016/j.watres.2005.03.017
E. Álvarez-Ayuso, H.W. Nugteren
The use of new modified poly(acrylamide) chelating resin with pendent benzothiazole groups containing donor atoms in the removal of heavy metal ions from aqueous solutions
IF 5.1 3区 工程技术Water Resources and IndustryPub Date : 2014-03-01 DOI: 10.1016/j.wri.2014.04.001
Semmedu Selvaraj Kalaivani , Thangaraj Vidhyadevi , Arukkani Murugesan , Kadathur Varathachary Thiruvengadaravi , Dhanasekaran Anuradha , S. Sivanesan , L. Ravikumar
Selective recognition and extraction of the uranyl ion from aqueous solutions with a recyclable chelating resin†
IF 8.4 1区 化学Chemical SciencePub Date : 2013-07-01 DOI: 10.1039/C3SC51507A
Aaron C. Sather, Orion B. Berryman and Julius Rebek
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out-of-core volume rendering for time-varying fields using a space-partitioning time (SPT) tree A graph reading behavior: Geodesic-path tendency HiMap: Adaptive visualization of large-scale online social networks A self-adaptive treemap-based technique for visualizing hierarchical data in 3D Interactive feature extraction and tracking by utilizing region coherency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1