Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval

Andrew Yates, Siddhant Arora, Xinyu Crystina Zhang, Wei Yang, Kevin Martin Jose, Jimmy J. Lin
{"title":"Capreolus: A Toolkit for End-to-End Neural Ad Hoc Retrieval","authors":"Andrew Yates, Siddhant Arora, Xinyu Crystina Zhang, Wei Yang, Kevin Martin Jose, Jimmy J. Lin","doi":"10.1145/3336191.3371868","DOIUrl":null,"url":null,"abstract":"We present Capreolus, a toolkit designed to facilitate end-to-end it ad hoc retrieval experiments with neural networks by providing implementations of prominent neural ranking models within a common framework. Our toolkit adopts a standard reranking architecture via tight integration with the Anserini toolkit for candidate document generation using standard bag-of-words approaches. Using Capreolus, we are able to reproduce Yang et al.'s recent SIGIR 2019 finding that, in a reranking scenario on the test collection from the TREC 2004 Robust Track, many neural retrieval models do not significantly outperform a strong query expansion baseline. Furthermore, we find that this holds true for five additional models implemented in Capreolus. We describe the architecture and design of our toolkit, which includes a Web interface to facilitate comparisons between rankings returned by different models.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We present Capreolus, a toolkit designed to facilitate end-to-end it ad hoc retrieval experiments with neural networks by providing implementations of prominent neural ranking models within a common framework. Our toolkit adopts a standard reranking architecture via tight integration with the Anserini toolkit for candidate document generation using standard bag-of-words approaches. Using Capreolus, we are able to reproduce Yang et al.'s recent SIGIR 2019 finding that, in a reranking scenario on the test collection from the TREC 2004 Robust Track, many neural retrieval models do not significantly outperform a strong query expansion baseline. Furthermore, we find that this holds true for five additional models implemented in Capreolus. We describe the architecture and design of our toolkit, which includes a Web interface to facilitate comparisons between rankings returned by different models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capreolus:端到端神经自组织检索工具包
我们介绍了Capreolus,这是一个工具包,旨在通过在公共框架内提供突出的神经排序模型的实现,促进神经网络的端到端特别检索实验。我们的工具包通过与Anserini工具包紧密集成,采用标准的重新排序体系结构,使用标准的词袋方法生成候选文档。使用Capreolus,我们能够重现Yang等人最近的SIGIR 2019发现,在TREC 2004 Robust Track测试集的重新排序场景中,许多神经检索模型并没有显着优于强查询扩展基线。此外,我们发现这适用于在Capreolus中实现的另外五个模型。我们描述了工具包的体系结构和设计,其中包括一个Web界面,用于比较不同模型返回的排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1