Intrusion Detection Using Fuzzy Stochastic Local Search Classifier

B. Bahamida, D. Boughaci
{"title":"Intrusion Detection Using Fuzzy Stochastic Local Search Classifier","authors":"B. Bahamida, D. Boughaci","doi":"10.1109/MICAI.2012.17","DOIUrl":null,"url":null,"abstract":"This paper proposes a stochastic local search classifier combined with the fuzzy logic concepts for intrusion detection. The proposed classifier works on knowledge base modeled as a fuzzy rule \"if-then\" and improved by using a stochastic local search. The method is tested on the Benchmark KDD'99 intrusion dataset and compared with other existing techniques for intrusion detection. The results are encouraging and demonstrate the benefit of the proposed approach.","PeriodicalId":348369,"journal":{"name":"2012 11th Mexican International Conference on Artificial Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2012.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a stochastic local search classifier combined with the fuzzy logic concepts for intrusion detection. The proposed classifier works on knowledge base modeled as a fuzzy rule "if-then" and improved by using a stochastic local search. The method is tested on the Benchmark KDD'99 intrusion dataset and compared with other existing techniques for intrusion detection. The results are encouraging and demonstrate the benefit of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊随机局部搜索分类器的入侵检测
本文提出了一种结合模糊逻辑概念的随机局部搜索分类器用于入侵检测。该分类器工作在基于模糊规则“if-then”的知识库上,并通过随机局部搜索进行改进。在基准KDD'99入侵数据集上对该方法进行了测试,并与其他现有的入侵检测技术进行了比较。结果是令人鼓舞的,并证明了所提出的方法的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conflict Resolution in Multiagent Systems: Balancing Optimality and Learning Speed Improvement on Automatic Speech Recognition Using Micro-genetic Algorithm A Novel Speed Control for DC Motors: Sliding Mode Control, Fuzzy Inference System, Neural Networks and Genetic Algorithms Middleware for Information Exchange in Heterogeneous Social Network Intrusion Detection Using Fuzzy Stochastic Local Search Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1