Evolving strategies for active flow control

M. Milano, P. Koumoutsakos, X. Giannakopoulos, J. Schmidhuber
{"title":"Evolving strategies for active flow control","authors":"M. Milano, P. Koumoutsakos, X. Giannakopoulos, J. Schmidhuber","doi":"10.1109/CEC.2000.870297","DOIUrl":null,"url":null,"abstract":"Rechenberg and Schwefel (Rechenberg, 1994) came up with the idea of evolution strategies for flow optimization. Since then advances in computer architectures and numerical algorithms have greatly decreased computational costs of realistic flow simulations, and today computational fluid dynamics (CFD) is complementing flow experiments as a key guiding tool for aerodynamic design. Of particular interest are designs with active devices controlling the inherently unsteady flow fields, promising potentially drastic performance leaps. We demonstrate that CFD-based design of active control strategies can benefit from evolutionary computation. We optimize the flow past an actively controlled circular cylinder, a fundamental prototypical configuration. The flow is controlled using surface-mounted vortex generators; evolutionary algorithms are used to optimize actuator placement and operating parameters. We achieve drag reduction of up to 60 percent, outperforming the best methods previously reported in the fluid dynamics literature on this benchmark problem.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Rechenberg and Schwefel (Rechenberg, 1994) came up with the idea of evolution strategies for flow optimization. Since then advances in computer architectures and numerical algorithms have greatly decreased computational costs of realistic flow simulations, and today computational fluid dynamics (CFD) is complementing flow experiments as a key guiding tool for aerodynamic design. Of particular interest are designs with active devices controlling the inherently unsteady flow fields, promising potentially drastic performance leaps. We demonstrate that CFD-based design of active control strategies can benefit from evolutionary computation. We optimize the flow past an actively controlled circular cylinder, a fundamental prototypical configuration. The flow is controlled using surface-mounted vortex generators; evolutionary algorithms are used to optimize actuator placement and operating parameters. We achieve drag reduction of up to 60 percent, outperforming the best methods previously reported in the fluid dynamics literature on this benchmark problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动流量控制的进化策略
Rechenberg和Schwefel (Rechenberg, 1994)提出了流动优化的进化策略。从那时起,计算机体系结构和数值算法的进步大大降低了真实流动模拟的计算成本,今天计算流体动力学(CFD)正在补充流动实验,成为气动设计的关键指导工具。特别令人感兴趣的是采用主动装置控制固有的非定常流场的设计,有望实现潜在的巨大性能飞跃。我们证明了基于cfd的主动控制策略设计可以从进化计算中获益。我们优化了流动通过一个主动控制的圆柱体,一个基本的原型配置。流动控制采用表面安装涡发生器;采用进化算法优化作动器的位置和运行参数。我们实现了高达60%的阻力减少,优于流体动力学文献中先前报道的关于这个基准问题的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1