{"title":"Improved surface impedance absorbing boundary for FDTD method","authors":"Y. Mao, T. Jiang, A. Elsherbeni","doi":"10.1109/ROPACES.2016.7465376","DOIUrl":null,"url":null,"abstract":"An improved absorbing boundary condition for terminating finite-difference time-domain (FDTD) simulations, based on the surface impedance concept, is proposed in this paper. The improved method uses E component collocation instead of the H component collocation as in [1]. The performance of the two SIABCs and 10-layers CPML are discussed with a 3D example which employed these absorbing boundary conditions (ABCs) in the calculation of RCS of a dielectric sphere. The computer resources requirements are also discussed. The compared result indicates that both the SIABCs have a comparable absorbing performance with 10-layers CPML, and the E component collocated SIABC has a better absorbing performance relative to H component collocated SIABC.","PeriodicalId":101990,"journal":{"name":"2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPACES.2016.7465376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
An improved absorbing boundary condition for terminating finite-difference time-domain (FDTD) simulations, based on the surface impedance concept, is proposed in this paper. The improved method uses E component collocation instead of the H component collocation as in [1]. The performance of the two SIABCs and 10-layers CPML are discussed with a 3D example which employed these absorbing boundary conditions (ABCs) in the calculation of RCS of a dielectric sphere. The computer resources requirements are also discussed. The compared result indicates that both the SIABCs have a comparable absorbing performance with 10-layers CPML, and the E component collocated SIABC has a better absorbing performance relative to H component collocated SIABC.