Temperature aware thread migration in 3D architecture with stacked DRAM

Dali Zhao, H. Homayoun, A. Veidenbaum
{"title":"Temperature aware thread migration in 3D architecture with stacked DRAM","authors":"Dali Zhao, H. Homayoun, A. Veidenbaum","doi":"10.1109/ISQED.2013.6523594","DOIUrl":null,"url":null,"abstract":"A 3D architecture with DRAM memory stacked on a multi-core processor has many benefits for the embedded system. Compared with a conventional 2D design, it reduces memory access latency, increases memory bandwidth and reduces energy consumption. However it poses a thermal challenge as the heat generated by the processor cannot dissipate efficiently through the DRAM memory layer. Due to the fact that DRAM is very sensitive to high temperature as well as temperature variance, 3D stacking causes more failures to occur because DRAM thermal variance is higher than the conventional 2D architecture. To address this thermal challenge we propose to reduce temperature variance and peak temperature of a 3D multi-core processor and stacked DRAM by thermally aware thread migration among processor cores. This method has very limited impact on processor performance. Using migration-based policy we reduce peak steady-state temperature in the processor by up to 8.3 degrees Celsius, with the average of 4.7 degrees.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

A 3D architecture with DRAM memory stacked on a multi-core processor has many benefits for the embedded system. Compared with a conventional 2D design, it reduces memory access latency, increases memory bandwidth and reduces energy consumption. However it poses a thermal challenge as the heat generated by the processor cannot dissipate efficiently through the DRAM memory layer. Due to the fact that DRAM is very sensitive to high temperature as well as temperature variance, 3D stacking causes more failures to occur because DRAM thermal variance is higher than the conventional 2D architecture. To address this thermal challenge we propose to reduce temperature variance and peak temperature of a 3D multi-core processor and stacked DRAM by thermally aware thread migration among processor cores. This method has very limited impact on processor performance. Using migration-based policy we reduce peak steady-state temperature in the processor by up to 8.3 degrees Celsius, with the average of 4.7 degrees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于堆叠DRAM的3D架构温度感知线程迁移
将DRAM内存堆叠在多核处理器上的3D架构对嵌入式系统有许多好处。与传统的2D设计相比,它减少了存储器访问延迟,增加了存储器带宽并降低了能耗。然而,由于处理器产生的热量不能通过DRAM存储层有效地消散,因此它提出了一个热挑战。由于DRAM对高温和温度变化非常敏感,3D堆叠会导致更多的故障发生,因为DRAM的热变化高于传统的2D架构。为了解决这一热挑战,我们提出通过在处理器内核之间热感知线程迁移来减少3D多核处理器和堆叠DRAM的温度差异和峰值温度。这种方法对处理器性能的影响非常有限。使用基于迁移的策略,我们将处理器的峰值稳态温度降低了8.3摄氏度,平均降低了4.7摄氏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1