A Learning Approach with Under-and Over-Sampling for Imbalanced Data Sets

Chun-Wu Yeh, Der-Chiang Li, Liang-Sian Lin, Tung-I Tsai
{"title":"A Learning Approach with Under-and Over-Sampling for Imbalanced Data Sets","authors":"Chun-Wu Yeh, Der-Chiang Li, Liang-Sian Lin, Tung-I Tsai","doi":"10.1109/IIAI-AAI.2016.20","DOIUrl":null,"url":null,"abstract":"It is difficult for learning models to achieve high classification performance with imbalanced data sets. To conquer the problem, this study presents a strategy involving the reduction of size of majority data set and the generation of synthetic samples of minority data set. Parkinson's disease data set is used to examine and to compare the performance of classification methods. The paired t-tests are also used to show the effectiveness of the proposed method compari.ng with that of the other methods.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

It is difficult for learning models to achieve high classification performance with imbalanced data sets. To conquer the problem, this study presents a strategy involving the reduction of size of majority data set and the generation of synthetic samples of minority data set. Parkinson's disease data set is used to examine and to compare the performance of classification methods. The paired t-tests are also used to show the effectiveness of the proposed method compari.ng with that of the other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不平衡数据集的欠采样和过采样学习方法
对于不平衡的数据集,学习模型很难达到较高的分类性能。为了解决这一问题,本研究提出了一种减少多数数据集大小和生成少数数据集合成样本的策略。帕金森病数据集用于检查和比较分类方法的性能。配对t检验也用于显示所提出的方法比较的有效性。与其他方法的相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Feedback System by Visual Biometric Data Analysis A Design and Implementation of Global Distributed POSIX File System on the Top of Multiple Independent Cloud Services Comparing Public Library Management under Designated Administrator System with Direct Management: Forcusing on Reference Service Robust Intelligent Total-Sliding-Mode Control for the Synchronization of Uncertain Chaotic Systems Extraction of Myocardial Fibrosis from MR Using Fuzzy Soft Thresholding Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1