Kosuke Ota, S. Kimura, M. Hasumi, Ayuta Suzuki, M. Ushijima, T. Sameshima
{"title":"Microwave rapid heating used for diffusing impurities in silicon","authors":"Kosuke Ota, S. Kimura, M. Hasumi, Ayuta Suzuki, M. Ushijima, T. Sameshima","doi":"10.1109/AM-FPD.2016.7543675","DOIUrl":null,"url":null,"abstract":"We report diffusing boron and phosphorus dopant atoms in silicon with impurity sources of BOx and POx layers formed on the top surfaces of n- and p-type crystalline silicon substrates. The silicon samples with impurity sources were subsequently covered with carbon powders to effectively absorb 2.45 GHz microwave power. Microwave irradiation at 1000 W for 27 s rapidly heated the carbon powders to 1265°C. The sheet resistivity of the samples decreased to 29 and 16 Ω/sq because of boron and phosphorus doping by 29-s-microwave heating. The photo-induced minority carrier lifetime increased to 2.0×10-5 and 3.5×10-5 s by 20- and 14-s-microwave heating for the boron- and phosphorus-doped samples. Boron atoms with a concentration above 1020 cm-3 diffused 150 nm deep by 26-s-microwave heating. Achievements of diode rectified characteristics and photovoltaic effect demonstrate pn junction formation at the top surface region by the present doping method.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report diffusing boron and phosphorus dopant atoms in silicon with impurity sources of BOx and POx layers formed on the top surfaces of n- and p-type crystalline silicon substrates. The silicon samples with impurity sources were subsequently covered with carbon powders to effectively absorb 2.45 GHz microwave power. Microwave irradiation at 1000 W for 27 s rapidly heated the carbon powders to 1265°C. The sheet resistivity of the samples decreased to 29 and 16 Ω/sq because of boron and phosphorus doping by 29-s-microwave heating. The photo-induced minority carrier lifetime increased to 2.0×10-5 and 3.5×10-5 s by 20- and 14-s-microwave heating for the boron- and phosphorus-doped samples. Boron atoms with a concentration above 1020 cm-3 diffused 150 nm deep by 26-s-microwave heating. Achievements of diode rectified characteristics and photovoltaic effect demonstrate pn junction formation at the top surface region by the present doping method.