A review of feature fusion-based media popularity prediction methods

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-12-01 DOI:10.1016/j.visinf.2022.07.003
An-An Liu , Xiaowen Wang , Ning Xu , Junbo Guo , Guoqing Jin , Quan Zhang , Yejun Tang , Shenyuan Zhang
{"title":"A review of feature fusion-based media popularity prediction methods","authors":"An-An Liu ,&nbsp;Xiaowen Wang ,&nbsp;Ning Xu ,&nbsp;Junbo Guo ,&nbsp;Guoqing Jin ,&nbsp;Quan Zhang ,&nbsp;Yejun Tang ,&nbsp;Shenyuan Zhang","doi":"10.1016/j.visinf.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>With the popularization of social media, the way of information transmission has changed, and the prediction of information popularity based on social media platforms has attracted extensive attention. Feature fusion-based media popularity prediction methods focus on the multi-modal features of social media, which aim at exploring the key factors affecting media popularity. Meanwhile, the methods make up for the deficiency in feature utilization of traditional methods based on information propagation processes. In this paper, we review feature fusion-based media popularity prediction methods from the perspective of feature extraction and predictive model construction. Before that, we analyze the influencing factors of media popularity to provide intuitive understanding. We further argue about the advantages and disadvantages of existing methods and datasets to highlight the future directions. Finally, we discuss the applications of popularity prediction. To the best of our knowledge, this is the first survey reporting feature fusion-based media popularity prediction methods.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 4","pages":"Pages 78-89"},"PeriodicalIF":3.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X22000869/pdfft?md5=3f5928b7e56ee9c39a226fe68dbcb36d&pid=1-s2.0-S2468502X22000869-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X22000869","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

With the popularization of social media, the way of information transmission has changed, and the prediction of information popularity based on social media platforms has attracted extensive attention. Feature fusion-based media popularity prediction methods focus on the multi-modal features of social media, which aim at exploring the key factors affecting media popularity. Meanwhile, the methods make up for the deficiency in feature utilization of traditional methods based on information propagation processes. In this paper, we review feature fusion-based media popularity prediction methods from the perspective of feature extraction and predictive model construction. Before that, we analyze the influencing factors of media popularity to provide intuitive understanding. We further argue about the advantages and disadvantages of existing methods and datasets to highlight the future directions. Finally, we discuss the applications of popularity prediction. To the best of our knowledge, this is the first survey reporting feature fusion-based media popularity prediction methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征融合的媒体流行度预测方法综述
随着社交媒体的普及,信息传播方式发生了变化,基于社交媒体平台的信息流行度预测受到了广泛关注。基于特征融合的媒体流行度预测方法关注社交媒体的多模态特征,旨在探索影响媒体流行度的关键因素。同时,该方法弥补了传统基于信息传播过程的特征利用方法的不足。本文从特征提取和预测模型构建两方面综述了基于特征融合的媒体热度预测方法。在此之前,我们分析了媒体受欢迎程度的影响因素,以提供直观的理解。我们进一步讨论了现有方法和数据集的优缺点,以突出未来的方向。最后,讨论了人气预测的应用。据我们所知,这是第一个基于调查报告特征融合的媒体人气预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1