Detection and recognition of moving objects using statistical motion detection and Fourier descriptors

D. Toth, T. Aach
{"title":"Detection and recognition of moving objects using statistical motion detection and Fourier descriptors","authors":"D. Toth, T. Aach","doi":"10.1109/ICIAP.2003.1234088","DOIUrl":null,"url":null,"abstract":"Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用统计运动检测和傅立叶描述子检测和识别运动物体
物体识别,即将物体分类到几个已知的物体类别中,通常是一项困难的任务。本文研究了静态摄像机记录的交通场景图像序列中运动目标的检测和分类问题。第一步,采用统计、光照不变的运动检测算法生成场景变化的二值蒙版。接下来,计算来自改进掩模的形状的傅里叶描述子,并将其用作描述场景中不同物体的特征向量。最后,利用前馈神经网络来区分人、车辆和背景杂波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1