{"title":"Learning Behavior Analysis in Classroom Based on Deep Learning","authors":"R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo","doi":"10.1109/ICICIP47338.2019.9012177","DOIUrl":null,"url":null,"abstract":"In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.