Learning Behavior Analysis in Classroom Based on Deep Learning

R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo
{"title":"Learning Behavior Analysis in Classroom Based on Deep Learning","authors":"R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo","doi":"10.1109/ICICIP47338.2019.9012177","DOIUrl":null,"url":null,"abstract":"In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的课堂学习行为分析
在本研究中,我们研究了用于课堂教学自动评价的学习行为分析。我们定义了听课、疲劳、举手、侧边和读写五种课堂学习行为,构建了ActRec-Classroom课堂学习行为数据集,该数据集包含5个类别,共5126张图片。借助卷积神经网络(CNN),提出了一个课堂学习行为分析系统框架。首先,采用Faster R-CNN对人体进行检测。然后利用OpenPose提取人体骨骼、面部和手指的关键点。最后,设计了基于CNN的动作识别分类器。大量的实验验证了所提出的系统。验证准确率平均达到92.86%,满足真实课堂教学环境下学习行为分析的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Robot Autonomous Exploration and Navigation in Large-scale Indoor Environments Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification Sparse Coding with Outliers A Novel Fuzzy Logic Control on the FVVT Lift of Internal Combustion Engine Adaptive Fuzzy Compensation Control of MIMO Stochastic Nonlinear Systems with Input Hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1