Decision support system using multimedia case history quantitative comparison and multivariate statistical analysis

N. Shklovskiy-Kordi, V. V. Shakin, Grigory O. Ptashko, M. Surin, B. Zingerman, S. Goldberg, M. Krol
{"title":"Decision support system using multimedia case history quantitative comparison and multivariate statistical analysis","authors":"N. Shklovskiy-Kordi, V. V. Shakin, Grigory O. Ptashko, M. Surin, B. Zingerman, S. Goldberg, M. Krol","doi":"10.1109/CBMS.2005.47","DOIUrl":null,"url":null,"abstract":"A decision support system (DSS) for modeling and generalization of verified clinical information on individual patients is being developed. The data set for each patient is collected inform of multimedia case history (MMCH). The paper presents an approach to the data processing. The approach is based on case-to-case and case-to-cluster comparative and multivariate statistical analysis of the patients' data. Namely, the DSS use the normalization procedures in individual time-and-subspace domain and the interpolation techniques for multimedia data. It makes the individual MMCH data to be pair-wise comparable. Some evaluation results of the approach in area of hematology are presented. Sample set of relevant MMCH data has been obtained for a dozen of Chernobyl patients. The approach developed is to provide backgrounds for a unified language to meet needs of WHO in quantitative description, comparison and generalization of individual patients' patterns.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A decision support system (DSS) for modeling and generalization of verified clinical information on individual patients is being developed. The data set for each patient is collected inform of multimedia case history (MMCH). The paper presents an approach to the data processing. The approach is based on case-to-case and case-to-cluster comparative and multivariate statistical analysis of the patients' data. Namely, the DSS use the normalization procedures in individual time-and-subspace domain and the interpolation techniques for multimedia data. It makes the individual MMCH data to be pair-wise comparable. Some evaluation results of the approach in area of hematology are presented. Sample set of relevant MMCH data has been obtained for a dozen of Chernobyl patients. The approach developed is to provide backgrounds for a unified language to meet needs of WHO in quantitative description, comparison and generalization of individual patients' patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决策支持系统采用多媒体案例历史定量比较和多元统计分析
正在开发一个决策支持系统(DSS),用于对个体患者的验证临床信息进行建模和概括。收集每个患者的数据集,并提供多媒体病历(MMCH)。本文提出了一种数据处理方法。该方法基于病例对病例和病例对集群的比较以及对患者数据的多元统计分析。也就是说,决策支持系统在单个时间和子空间域中使用归一化过程,并对多媒体数据使用插值技术。它使单个MMCH数据具有成对可比性。介绍了该方法在血液学领域的一些评价结果。已获得了十几名切尔诺贝利病人的相关MMCH数据样本集。所制定的方法是为统一语言提供背景,以满足世卫组织在定量描述、比较和概括个别患者模式方面的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov model-based clustering for efficient patient care Incremental learning of ensemble classifiers on ECG data Grid-enabled workflows for data intensive medical applications Case-based tissue classification for monitoring leg ulcer healing Optimisation of neural network training through pre-establishment of synaptic weights applied to body surface mapping classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1