UAV-based Air-to-Ground Channel Modeling for Diverse Environments

Muhammad Usaid Akram, Usama Saeed, Syed Ali Hassan, Haejoon Jung
{"title":"UAV-based Air-to-Ground Channel Modeling for Diverse Environments","authors":"Muhammad Usaid Akram, Usama Saeed, Syed Ali Hassan, Haejoon Jung","doi":"10.1109/WCNC45663.2020.9120659","DOIUrl":null,"url":null,"abstract":"In recent years, unmanned aerial vehicles (UAVs) have been deployed in a range of new applications such as remote surveillance, package delivery and relief operations. The existing scenario of next-generation communications systems envisions the use of UAVs as low altitude platforms (LAPs) as one of the enabling technologies of next-gen networks. Telecom operators have been exploring low-altitude UAV-based communications solutions for on-demand deployment. The emerging possibilities of UAVs in air-to-ground (AG) communication necessitate accurate channel models in order to facilitate the design and implementation of such AG links. However, the propagation channels of Pakistan and in general the South Asian region have not been as of yet widely investigated. In this paper, a comprehensive study is presented on the air-to-ground channel parameters along with details of measurement campaigns as well as the limitations of this work and future research directions.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, unmanned aerial vehicles (UAVs) have been deployed in a range of new applications such as remote surveillance, package delivery and relief operations. The existing scenario of next-generation communications systems envisions the use of UAVs as low altitude platforms (LAPs) as one of the enabling technologies of next-gen networks. Telecom operators have been exploring low-altitude UAV-based communications solutions for on-demand deployment. The emerging possibilities of UAVs in air-to-ground (AG) communication necessitate accurate channel models in order to facilitate the design and implementation of such AG links. However, the propagation channels of Pakistan and in general the South Asian region have not been as of yet widely investigated. In this paper, a comprehensive study is presented on the air-to-ground channel parameters along with details of measurement campaigns as well as the limitations of this work and future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无人机的多环境空对地信道建模
近年来,无人驾驶飞行器(uav)已被部署在远程监视、包裹递送和救援行动等一系列新应用中。下一代通信系统的现有方案设想使用无人机作为低空平台(lap),作为下一代网络的使能技术之一。电信运营商一直在探索基于低空无人机的按需部署通信解决方案。无人机在空对地(AG)通信中出现的可能性需要精确的信道模型,以促进这种AG链路的设计和实现。然而,巴基斯坦和整个南亚地区的传播渠道尚未得到广泛调查。本文对空对地通道参数进行了全面的研究,详细介绍了测量活动,以及本工作的局限性和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precoding with the Assistance of Attitude Information in Millimeter Wave MIMO System Performance Analysis of Temporal Correlation in Finite-Area UAV Networks with LoS/NLoS Location-Privacy-Aware Service Migration in Mobile Edge Computing Filter Bank Multicarrier Transmission Based on the Discrete Hartley Transform Resource Allocation and Throughput Maximization in Decoupled 5G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1