{"title":"Transparent metal mesh based on roll to sheet UV imprinting using a PDMS soft mold","authors":"C. Chuang, B. Chang, Jian-Ming Chen","doi":"10.1109/NEMS.2016.7758247","DOIUrl":null,"url":null,"abstract":"Transparent conductive electrodes (TCE) possessing a combination of high optical transmission and good electrical conductivity find applications in numerous optoelectronic devices. In this study, we propose the low cost fabrication of a fine metal mesh structure on rigid (glass) and flexible (PET) substrates as a promising and feasible approach for fulfilling large size TCE requirements. We have utilized a roll-to-sheet assisted ultraviolet imprinting protocol to transfer micro trench structures using a flexible PDMS stamp. The conductive silver ink is filled into the micro trench structures by controlling the processing parameters which include pressure, scraping angle and speed. The metal mesh based glass and PET substrates show a transmission of about 90% while the electrical resistance is as low as 6 Ω/□. Thus, we believe that this method can be utilized as an economically viable alternative to ITO in TCE applications.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent conductive electrodes (TCE) possessing a combination of high optical transmission and good electrical conductivity find applications in numerous optoelectronic devices. In this study, we propose the low cost fabrication of a fine metal mesh structure on rigid (glass) and flexible (PET) substrates as a promising and feasible approach for fulfilling large size TCE requirements. We have utilized a roll-to-sheet assisted ultraviolet imprinting protocol to transfer micro trench structures using a flexible PDMS stamp. The conductive silver ink is filled into the micro trench structures by controlling the processing parameters which include pressure, scraping angle and speed. The metal mesh based glass and PET substrates show a transmission of about 90% while the electrical resistance is as low as 6 Ω/□. Thus, we believe that this method can be utilized as an economically viable alternative to ITO in TCE applications.