Energy-Efficient Approximate Squaring Hardware for Error-Resilient Digital Systems

Merin Loukrakpam, C. L. Singh, Madhuchhanda Choudhury
{"title":"Energy-Efficient Approximate Squaring Hardware for Error-Resilient Digital Systems","authors":"Merin Loukrakpam, C. L. Singh, Madhuchhanda Choudhury","doi":"10.1109/EDKCON.2018.8770453","DOIUrl":null,"url":null,"abstract":"In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. An energy-efficient 32-bit approximate hardware for squaring was implemented using this method. The proposed hardware achieved a mean relative error of 0.43% and delivered up to 47% energy saving when compared with state-of-the-art approximate multipliers. The comparison also revealed that the proposed hardware is the most efficient design in terms of error-area-delay-power product.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. An energy-efficient 32-bit approximate hardware for squaring was implemented using this method. The proposed hardware achieved a mean relative error of 0.43% and delivered up to 47% energy saving when compared with state-of-the-art approximate multipliers. The comparison also revealed that the proposed hardware is the most efficient design in terms of error-area-delay-power product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向容错数字系统的节能近似平方硬件
近年来,在能量受限的设备上执行数字信号处理和机器学习应用的需求很高。平方是这类应用程序中使用的重要算术运算。因此,提高平方的能源效率是至关重要的。本文提出了一种新的基于平方函数分段线性分割的逼近方法。利用该方法实现了一种节能的32位近似平方硬件。与最先进的近似乘法器相比,所提出的硬件实现了0.43%的平均相对误差,并提供了高达47%的节能。比较还表明,所提出的硬件在误差-面积-延迟-功耗积方面是最有效的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Performance Comparison of a MTJ Memory Device Using Low-Dimensional HfO2, A12O3, La2O3 and h-BN as Composite Dielectric Stress Tuning in NanoScale FinFETs at 7nm Modeling Short Channel Behavior of Proposed Work Function Engineered High-k Gate Stack DG MOSFET with Vertical Gaussian Doping Study of Ag Doped SnO2 Film and its Response Towards Aromatic Compounds Present in Tea Stress Analysis in Uniaxially Strained-SiGe Channel FinFETs at 7N Technology Node
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1