A. D. Angelis, S. Dwivedi, P. Händel, A. Moschitta, P. Carbone
{"title":"Ranging results using a UWB platform in an indoor environment","authors":"A. D. Angelis, S. Dwivedi, P. Händel, A. Moschitta, P. Carbone","doi":"10.1109/ICL-GNSS.2013.6577273","DOIUrl":null,"url":null,"abstract":"This paper presents an impulse-radio UWB experimental platform for ranging and positioning in GNSS-challenged environments. The platform is based on the two-way time-of-arrival principle of operation, which reduces architecture complexity and relaxes the synchronization requirements with respect to time-of-arrival or time-difference-of-arrival solutions. The modular architecture of the platform is described together with the design and features of its main components, namely the 5.6-GHz RF front end and the baseband module for measurement and processing. A set of experimental results obtained using the realized platform in an indoor office environment is presented and discussed. The platform provides a maximum range of about 30 m in line-of-sight conditions with an RMSE of the order of 40 cm.","PeriodicalId":113867,"journal":{"name":"2013 International Conference on Localization and GNSS (ICL-GNSS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2013.6577273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents an impulse-radio UWB experimental platform for ranging and positioning in GNSS-challenged environments. The platform is based on the two-way time-of-arrival principle of operation, which reduces architecture complexity and relaxes the synchronization requirements with respect to time-of-arrival or time-difference-of-arrival solutions. The modular architecture of the platform is described together with the design and features of its main components, namely the 5.6-GHz RF front end and the baseband module for measurement and processing. A set of experimental results obtained using the realized platform in an indoor office environment is presented and discussed. The platform provides a maximum range of about 30 m in line-of-sight conditions with an RMSE of the order of 40 cm.