{"title":"Photosensing behaviors of S and N co-doped graphene quantum dot sensitized ZnO nanorod/conducting polymer hybrid devices","authors":"J. L. Hmar, T. Majumder, S. Dhar, S. P. Mondal","doi":"10.1109/MICROCOM.2016.7522600","DOIUrl":null,"url":null,"abstract":"ZnO nanorods have been grown on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrates by a hydrothermal method. Hybrid photosensing devices have been fabricated with S and N co-doped graphene quantum dot (SN-GQD) sensitized ZnO nanorods and a conducting polymer poly (3-hexylthiophene) (P3HT). The photoresponse behaviors have been investigated for hybrid devices with and without GQD attachment. SN-GQD sensitized nanorod based device demonstrated superior photoresponse and higher incident photon to electron conversion efficiency (IPCE) than pristine ZnO nanorods.","PeriodicalId":118902,"journal":{"name":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICROCOM.2016.7522600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ZnO nanorods have been grown on indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrates by a hydrothermal method. Hybrid photosensing devices have been fabricated with S and N co-doped graphene quantum dot (SN-GQD) sensitized ZnO nanorods and a conducting polymer poly (3-hexylthiophene) (P3HT). The photoresponse behaviors have been investigated for hybrid devices with and without GQD attachment. SN-GQD sensitized nanorod based device demonstrated superior photoresponse and higher incident photon to electron conversion efficiency (IPCE) than pristine ZnO nanorods.