Estimating Parameters of Gravitationally Lensed Quasars with Simulation-Based Inference and SplineCNNs

E. Danilov, A. Ćiprijanović, B. Nord
{"title":"Estimating Parameters of Gravitationally Lensed Quasars with Simulation-Based Inference and SplineCNNs","authors":"E. Danilov, A. Ćiprijanović, B. Nord","doi":"10.2172/1877660","DOIUrl":null,"url":null,"abstract":"The Hubble Tension is considered a crisis for the LCDM model in modern cosmology. Addressing this prob-lem presents opportunities for identifying issues in data acquisition and processing pipelines or discovering new physics related to dark matter and dark energy. Time delays in the time-varying flux of gravitationally lensed quasars can be used to precisely measure the Hubble constant ( H 0 ) and potentially address the aforementioned crisis. Gaussian Processes (GPs) are typically used to model and infer quasar light curves; unfortunately, the optimization of GPs incurs a bias in the time-evolution parameters. In this work, we intro-duce a machine learning approach for fast, unbiased inference of quasar light curve parameters. Our method is amortized, which makes it applicable to very large datasets from next-generation surveys, like LSST. Addi-tionally, since it is unbiased, it will enable improved constraints on H 0 . Our model uses Spline Convolutional VAE (SplineCVAE) to extract descriptive statistics from quasar light curves and a Sequential Neural Posterior Estimator (SNPE) to predict posteriors of Gaussian process parameters from these statistics. Our SplineCVAE reaches reconstruction loss RMSE=0.04 for data normalized in the range [0 , 1] . SNPE predicts the order of magnitude of time-evolution parameters with an absolute error of less than 0.2.","PeriodicalId":103933,"journal":{"name":"Estimating Parameters of Gravitationally Lensed Quasars with Simulation-Based Inference and SplineCNNs","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estimating Parameters of Gravitationally Lensed Quasars with Simulation-Based Inference and SplineCNNs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1877660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Hubble Tension is considered a crisis for the LCDM model in modern cosmology. Addressing this prob-lem presents opportunities for identifying issues in data acquisition and processing pipelines or discovering new physics related to dark matter and dark energy. Time delays in the time-varying flux of gravitationally lensed quasars can be used to precisely measure the Hubble constant ( H 0 ) and potentially address the aforementioned crisis. Gaussian Processes (GPs) are typically used to model and infer quasar light curves; unfortunately, the optimization of GPs incurs a bias in the time-evolution parameters. In this work, we intro-duce a machine learning approach for fast, unbiased inference of quasar light curve parameters. Our method is amortized, which makes it applicable to very large datasets from next-generation surveys, like LSST. Addi-tionally, since it is unbiased, it will enable improved constraints on H 0 . Our model uses Spline Convolutional VAE (SplineCVAE) to extract descriptive statistics from quasar light curves and a Sequential Neural Posterior Estimator (SNPE) to predict posteriors of Gaussian process parameters from these statistics. Our SplineCVAE reaches reconstruction loss RMSE=0.04 for data normalized in the range [0 , 1] . SNPE predicts the order of magnitude of time-evolution parameters with an absolute error of less than 0.2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模拟推理和样条神经网络的引力透镜类星体参数估计
哈勃张力被认为是现代宇宙学中LCDM模型的危机。解决这个问题为识别数据采集和处理管道中的问题或发现与暗物质和暗能量相关的新物理提供了机会。引力透镜类星体的时变通量的时间延迟可以用来精确测量哈勃常数(H 0),并有可能解决上述危机。高斯过程(GPs)通常用于模拟和推断类星体的光曲线;然而,GPs优化在时间演化参数上存在偏差。在这项工作中,我们引入了一种快速、无偏推断类星体光曲线参数的机器学习方法。我们的方法是平摊的,这使得它适用于来自下一代调查的非常大的数据集,比如LSST。此外,由于它是无偏的,它将支持对h0的改进约束。我们的模型使用样条卷积VAE (SplineCVAE)从类星光曲线中提取描述性统计数据,并使用顺序神经后验估计器(SNPE)从这些统计数据中预测高斯过程参数的后验。对于在[0,1]范围内归一化的数据,我们的SplineCVAE达到了重建损失RMSE=0.04。SNPE预测时间演化参数的数量级,绝对误差小于0.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating Parameters of Gravitationally Lensed Quasars with Simulation-Based Inference and SplineCNNs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1