Depression Detection Based on Facial Expression, Audio and Gait

Ziqian Dai, Qiuping Li, Yichen Shang, Xin’an Wang
{"title":"Depression Detection Based on Facial Expression, Audio and Gait","authors":"Ziqian Dai, Qiuping Li, Yichen Shang, Xin’an Wang","doi":"10.1109/ITNEC56291.2023.10082163","DOIUrl":null,"url":null,"abstract":"Depression is a mental illness that endangers patients’ physical and mental health and imposes burdens on family and society. More and more people suffer from depression nowadays, which increases medical pressure. Depression can be diagnosed by patients’ voice, facial expression and gait. The current study mostly bases on one modality or a fusion of two. In this paper, we gathered 234 pieces of gait video, interview audio and video, proposed our pipeline and compared the performance between three single modalities and multi-modal fusion. The facial expression has the best performance, audio comes second, and gait comes last. The fusion of modalities can improve performance. This can provide a basis for the choice of modality in automatic screening or auxiliary diagnosis of depression. We also evaluated our model on public data set AVEC 2013, AVEC 2014 and Emotion-gait, which verifies its validity.","PeriodicalId":218770,"journal":{"name":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC56291.2023.10082163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depression is a mental illness that endangers patients’ physical and mental health and imposes burdens on family and society. More and more people suffer from depression nowadays, which increases medical pressure. Depression can be diagnosed by patients’ voice, facial expression and gait. The current study mostly bases on one modality or a fusion of two. In this paper, we gathered 234 pieces of gait video, interview audio and video, proposed our pipeline and compared the performance between three single modalities and multi-modal fusion. The facial expression has the best performance, audio comes second, and gait comes last. The fusion of modalities can improve performance. This can provide a basis for the choice of modality in automatic screening or auxiliary diagnosis of depression. We also evaluated our model on public data set AVEC 2013, AVEC 2014 and Emotion-gait, which verifies its validity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于面部表情、声音和步态的抑郁检测
抑郁症是一种危害患者身心健康,给家庭和社会带来负担的精神疾病。现在越来越多的人患有抑郁症,这增加了医疗压力。抑郁症可以通过患者的声音、面部表情和步态来诊断。目前的研究大多基于一种情态或两种情态的融合。在本文中,我们收集了234个步态视频、访谈音频和视频,提出了我们的管道,并比较了三种单一模式和多模式融合的性能。面部表情表现最好,其次是声音,最后是步态。模式的融合可以提高表现。这可为抑郁症自动筛查或辅助诊断的方式选择提供依据。并在公共数据集AVEC 2013、AVEC 2014和emotion -步态上对模型进行了评估,验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on deterministic service quality guarantee for 5G network slice in power grid A wearable, real-time sEMG gesture classifier based on E-tattoo and CDF-CNN for prosthetic control Development of online monitoring system for cylinder pressure of marine low-speed engine based on virtual instrument An Improved Prediction Method of Transformer Oil Temperature Ranging Model and Algorithm Based on Monocular Vision for Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1