{"title":"Structure-adaptive SOM to classify 3-dimensional point light actors' gender","authors":"Sung-Bae Cho","doi":"10.1109/ICONIP.2002.1198201","DOIUrl":null,"url":null,"abstract":"Classifying the patterns of moving point lights attached on actor's bodies with self-organizing map often fails to get successful results with its original unsupervised learning algorithm. This paper exploits a structure-adaptive self-organizing map (SASOM) which adaptively updates the weights, structure and size of the map, resulting in remarkable improvement of pattern classification performance. We have compared the results with those of conventional pattern classifiers and human subjects. SASOM turns out to be the best classifier producing 97.1% of recognition rate on the 312 test data from 26 subjects.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Classifying the patterns of moving point lights attached on actor's bodies with self-organizing map often fails to get successful results with its original unsupervised learning algorithm. This paper exploits a structure-adaptive self-organizing map (SASOM) which adaptively updates the weights, structure and size of the map, resulting in remarkable improvement of pattern classification performance. We have compared the results with those of conventional pattern classifiers and human subjects. SASOM turns out to be the best classifier producing 97.1% of recognition rate on the 312 test data from 26 subjects.