Design centric modeling of digital hardware

Johannes Schreiner, Rainer Findenig, W. Ecker
{"title":"Design centric modeling of digital hardware","authors":"Johannes Schreiner, Rainer Findenig, W. Ecker","doi":"10.1109/HLDVT.2016.7748254","DOIUrl":null,"url":null,"abstract":"Today's dominant RTL languages, VHDL and (System) Verilog, were designed as description and simulation languages. Therefore, they have a clearly defined - but not in all cases deterministic - simulation algorithm as backbone of the language definition. Both languages have been adopted as RTL design languages but still impose a lot of simulation/synthesis mismatches. As a further disadvantage, considerable overhead can be needed to code well-known hardware patterns such as FSMs. Finally, the simulation algorithm prevents efficient simulation (e.g. two-state or cycle-based simulation) as well as advanced model analysis (e.g. X-propagation) or fosters an execution that is not in sync with the language definition. Therefore, we developed a design centric modeling approach that allows a clear specification of the design intent and provides freedom for various target HDLs and modeling styles. Since our approach is specified without underlying simulation semantics, we provide a formal definition considering only certain points in simulation traces, thus enabling various ways for simulation. To avoid syntactic sugar, we selected a metamodeling based approach, which we use as part of a modeldriven generation-focused design approach.","PeriodicalId":166427,"journal":{"name":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International High Level Design Validation and Test Workshop (HLDVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2016.7748254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Today's dominant RTL languages, VHDL and (System) Verilog, were designed as description and simulation languages. Therefore, they have a clearly defined - but not in all cases deterministic - simulation algorithm as backbone of the language definition. Both languages have been adopted as RTL design languages but still impose a lot of simulation/synthesis mismatches. As a further disadvantage, considerable overhead can be needed to code well-known hardware patterns such as FSMs. Finally, the simulation algorithm prevents efficient simulation (e.g. two-state or cycle-based simulation) as well as advanced model analysis (e.g. X-propagation) or fosters an execution that is not in sync with the language definition. Therefore, we developed a design centric modeling approach that allows a clear specification of the design intent and provides freedom for various target HDLs and modeling styles. Since our approach is specified without underlying simulation semantics, we provide a formal definition considering only certain points in simulation traces, thus enabling various ways for simulation. To avoid syntactic sugar, we selected a metamodeling based approach, which we use as part of a modeldriven generation-focused design approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以设计为中心的数字硬件建模
今天占主导地位的RTL语言,VHDL和(系统)Verilog,被设计为描述和模拟语言。因此,它们有一个明确定义的(但并非在所有情况下都是确定性的)模拟算法作为语言定义的主干。这两种语言都被用作RTL设计语言,但仍然存在许多模拟/合成不匹配。另一个缺点是,编写众所周知的硬件模式(如fsm)可能需要相当大的开销。最后,仿真算法阻碍了高效的仿真(例如两状态或基于周期的仿真)以及高级模型分析(例如x传播),或者促进了与语言定义不同步的执行。因此,我们开发了一种以设计为中心的建模方法,允许对设计意图进行明确的说明,并为各种目标hdl和建模风格提供自由。由于我们的方法是在没有底层仿真语义的情况下指定的,因此我们提供了一个只考虑仿真轨迹中某些点的正式定义,从而支持各种仿真方法。为了避免语法糖,我们选择了一种基于元建模的方法,我们将其用作模型驱动的以生成为中心的设计方法的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal semantics of behavior specifications in the architecture analysis and design language standard Probabilistic reachability analysis of the tap withdrawal circuit in caenorhabditis elegans Control-flow guided clause generation for property directed reachability Automatically adjusting system level designs after RTL/gate-level ECO Brain-computer interface using P300: a gaming approach for neurocognitive impairment diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1