Textured, doped, ZnO thin films produced by a new process for a-Si and CIGS solar cell application

S. Guo, L. Sahoo, G. Sosale, A. Delahoy
{"title":"Textured, doped, ZnO thin films produced by a new process for a-Si and CIGS solar cell application","authors":"S. Guo, L. Sahoo, G. Sosale, A. Delahoy","doi":"10.1117/12.736084","DOIUrl":null,"url":null,"abstract":"The properties of a transparent conductive oxide (TCO) used as a front electrode for thin-film solar cells and modules play a major role in determining the maximum attainable conversion efficiency. Doped ZnO is an important TCO that is widely used in amorphous/nanocrystalline silicon (a-Si/nc-Si) and CIGS thin-film solar cells. In the case of a-Si/nc-Si cells, the ZnO thin film should be textured to promote light trapping to increase the short-circuit current density Jsc. In this work, textured, aluminum-doped ZnO (ZnO:Al) thin films have been directly deposited by a sputtering-based method and without the need for post-deposition etching. The morphology, optical properties and electrical properties of the films have been studied. SEM micrographs show that feature sizes around 0.2 - 0.4μm have been achieved at a film thickness of 1μm, and that the morphology can be controlled by the deposition conditions. AFM images were analyzed to extract a set of topographic parameters (amplitude, spatial, and hybrid). The optical transmission, haze, and angle-resolved light scattering of the textured ZnO:Al films were measured and compared to properties of commercially-available textured SnO2:F thin films on glass. Higher haze and reduced absorption could be obtained with the textured ZnO:Al films. Hall effect measurements on these films yielded a carrier concentration and mobility of 2.75 x 1020cm-3 and 24.1cm2/Vs, respectively. We also report that the use of these textured ZnO:Al films as the top TCO for CIGS solar cells results in reduced cell reflectance and increased Jsc. The novel deposition method provides a potential pathway to large area and cost effective production of a textured ZnO TCO for thin-film PV manufacturing operations.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.736084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The properties of a transparent conductive oxide (TCO) used as a front electrode for thin-film solar cells and modules play a major role in determining the maximum attainable conversion efficiency. Doped ZnO is an important TCO that is widely used in amorphous/nanocrystalline silicon (a-Si/nc-Si) and CIGS thin-film solar cells. In the case of a-Si/nc-Si cells, the ZnO thin film should be textured to promote light trapping to increase the short-circuit current density Jsc. In this work, textured, aluminum-doped ZnO (ZnO:Al) thin films have been directly deposited by a sputtering-based method and without the need for post-deposition etching. The morphology, optical properties and electrical properties of the films have been studied. SEM micrographs show that feature sizes around 0.2 - 0.4μm have been achieved at a film thickness of 1μm, and that the morphology can be controlled by the deposition conditions. AFM images were analyzed to extract a set of topographic parameters (amplitude, spatial, and hybrid). The optical transmission, haze, and angle-resolved light scattering of the textured ZnO:Al films were measured and compared to properties of commercially-available textured SnO2:F thin films on glass. Higher haze and reduced absorption could be obtained with the textured ZnO:Al films. Hall effect measurements on these films yielded a carrier concentration and mobility of 2.75 x 1020cm-3 and 24.1cm2/Vs, respectively. We also report that the use of these textured ZnO:Al films as the top TCO for CIGS solar cells results in reduced cell reflectance and increased Jsc. The novel deposition method provides a potential pathway to large area and cost effective production of a textured ZnO TCO for thin-film PV manufacturing operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用新工艺制备的织构掺杂ZnO薄膜在a- si和CIGS太阳能电池中的应用
透明导电氧化物(TCO)用作薄膜太阳能电池和组件的前电极,其性能在决定可达到的最大转换效率方面起着重要作用。ZnO是一种重要的TCO,广泛应用于非晶/纳米晶硅(a-Si/nc-Si)和CIGS薄膜太阳能电池中。在a-Si/nc-Si电池中,需要对ZnO薄膜进行织构以促进光捕获,从而提高短路电流密度Jsc。在这项工作中,通过基于溅射的方法直接沉积了有织构的铝掺杂ZnO (ZnO:Al)薄膜,而无需沉积后蚀刻。研究了薄膜的形貌、光学性能和电学性能。SEM显微图显示,在薄膜厚度为1μm时,可以获得0.2 ~ 0.4μm左右的特征尺寸,且形貌可以由沉积条件控制。分析AFM图像以提取一组地形参数(振幅,空间和混合)。测量了ZnO:Al织构薄膜的光学透射率、雾度和角分辨光散射,并与市售的SnO2:F玻璃薄膜的性能进行了比较。织构后的ZnO:Al薄膜具有较高的雾度和较低的吸收率。对这些薄膜进行霍尔效应测量,载流子浓度和迁移率分别为2.75 x 1020cm-3和24.1cm /Vs。我们还报道,使用这些织构ZnO:Al薄膜作为CIGS太阳能电池的顶部TCO,可以降低电池反射率并增加Jsc。这种新的沉积方法为薄膜光伏制造操作提供了大面积和经济有效地生产纹理ZnO TCO的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PV system reliability program at Sandia National Labs: From material-level to system-level analysis (Presentation Recording) A novel method for mapping open-circuit voltage in solar cells with nanoscale resolution (Presentation Recording) Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording) Surface passivated colloidal CuIn(S,Se)2 quantum dots for quantum dot heterojunction solar cells (Presentation Recording) Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1