A Method to Obtain Deep Neural Network for Predicting ISAR Images of Coted Targets with Defect

Heng-hua Cao, Jianing Cao, Q. Ren
{"title":"A Method to Obtain Deep Neural Network for Predicting ISAR Images of Coted Targets with Defect","authors":"Heng-hua Cao, Jianing Cao, Q. Ren","doi":"10.1109/iwem53379.2021.9790521","DOIUrl":null,"url":null,"abstract":"The coating of radar absorbing material can reduce radar cross section of aircrafts significantly, it’s indeed necessary to analyze their electromagnetic scattering characteristics. The traditional method requires plenty of time thus can’t meet the need of real-time analysis. To solve this problem, this paper proposed an image-to-image deep neural network based on U-net with residual unit. This network can predict the ISAR image for a coated target with random defect. The well-trained network can accelerate the speed by five orders while ensuring a relative error lower than 0.28%. The numerical results are exhibited to prove that the proposed method is of great efficiency and accuracy compared to the traditional method.","PeriodicalId":141204,"journal":{"name":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iwem53379.2021.9790521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The coating of radar absorbing material can reduce radar cross section of aircrafts significantly, it’s indeed necessary to analyze their electromagnetic scattering characteristics. The traditional method requires plenty of time thus can’t meet the need of real-time analysis. To solve this problem, this paper proposed an image-to-image deep neural network based on U-net with residual unit. This network can predict the ISAR image for a coated target with random defect. The well-trained network can accelerate the speed by five orders while ensuring a relative error lower than 0.28%. The numerical results are exhibited to prove that the proposed method is of great efficiency and accuracy compared to the traditional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的缺陷标靶ISAR图像预测方法
雷达吸波材料的涂层可以显著减小飞机的雷达截面积,对飞机的电磁散射特性进行分析是很有必要的。传统的方法需要大量的时间,不能满足实时分析的需要。为了解决这一问题,本文提出了一种基于U-net的带残差单元的图像到图像深度神经网络。该网络可以预测具有随机缺陷的涂层目标的ISAR图像。经过良好训练的网络可以在保证相对误差小于0.28%的情况下,将速度提高5个数量级。数值结果表明,与传统方法相比,该方法具有较高的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of Dual-Band Chireix Outphasing Power Amplifier Dual-Band and Dual Circular Polarization Microstrip Antennas for Portable RFID Readers A New Methodology to Build the ICEM-CE Model for Microcontroller Units Design of an Antennas with Broadband and Linearly Polarized Omni-directional Radiation Pattern A Miniaturized Circularly Polarized Antenna with Short Circuit Strip for RFID Reader
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1