Stretch: Balancing QoS and Throughput for Colocated Server Workloads on SMT Cores

Artemiy Margaritov, Siddharth Gupta, Rekai González-Alberquilla, Boris Grot
{"title":"Stretch: Balancing QoS and Throughput for Colocated Server Workloads on SMT Cores","authors":"Artemiy Margaritov, Siddharth Gupta, Rekai González-Alberquilla, Boris Grot","doi":"10.1109/HPCA.2019.00024","DOIUrl":null,"url":null,"abstract":"—In a drive to maximize resource utilization, today’s datacenters are moving to colocation of latency-sensitive and batch workloads on the same server. State-of-the-art deployments, such as those at Google, colocate such diverse workloads even on a single SMT core. This form of aggressive colocation is afforded by virtue of the fact that a latency-sensitive service operating below its peak load has significant slack in its response latency with respect to the QoS target. The slack affords a degradation in single-thread performance, which is inevitable under SMT colocation, without compromising QoS targets.This work makes the observation that many batch applications can greatly benefit from a large instruction window to uncover ILP and MLP. Under SMT colocation, conventional wisdom holds that individual hardware threads should be limited in their ability to acquire and hold a disproportionately large share of microarchitectural resources so as not to compromise the performance of a co-running thread. We show that the performance slack inherent in latency-sensitive workloads operating at low to moderate load makes it safe to shift microarchitectural resources to a co-running batch thread without compromising QoS targets. Based on this insight, we introduce Stretch, a simple ROB partitioning scheme that is invoked by system software to provide one hardware thread with a much larger ROB partition at the expense of another thread. When Stretch is enabled for latency-sensitive workloads operating below their peak load on an SMT core, co-running batch applications gain 13% of performance on average (30% max) over a baseline SMT colocation and without compromising QoS constraints.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

—In a drive to maximize resource utilization, today’s datacenters are moving to colocation of latency-sensitive and batch workloads on the same server. State-of-the-art deployments, such as those at Google, colocate such diverse workloads even on a single SMT core. This form of aggressive colocation is afforded by virtue of the fact that a latency-sensitive service operating below its peak load has significant slack in its response latency with respect to the QoS target. The slack affords a degradation in single-thread performance, which is inevitable under SMT colocation, without compromising QoS targets.This work makes the observation that many batch applications can greatly benefit from a large instruction window to uncover ILP and MLP. Under SMT colocation, conventional wisdom holds that individual hardware threads should be limited in their ability to acquire and hold a disproportionately large share of microarchitectural resources so as not to compromise the performance of a co-running thread. We show that the performance slack inherent in latency-sensitive workloads operating at low to moderate load makes it safe to shift microarchitectural resources to a co-running batch thread without compromising QoS targets. Based on this insight, we introduce Stretch, a simple ROB partitioning scheme that is invoked by system software to provide one hardware thread with a much larger ROB partition at the expense of another thread. When Stretch is enabled for latency-sensitive workloads operating below their peak load on an SMT core, co-running batch applications gain 13% of performance on average (30% max) over a baseline SMT colocation and without compromising QoS constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stretch:在SMT内核上平衡服务器工作负载的QoS和吞吐量
为了最大限度地利用资源,今天的数据中心正在转向将对延迟敏感的批处理工作负载托管在同一台服务器上。最先进的部署(例如Google的部署)甚至可以在单个SMT核心上配置如此多样化的工作负载。这种形式的主动托管是由于以下事实提供的:运行在其峰值负载以下的延迟敏感服务的响应延迟相对于QoS目标具有显著的松弛。这种松弛会导致单线程性能下降,这在SMT托管下是不可避免的,但不会影响QoS目标。这项工作观察到,许多批处理应用程序可以从一个大的指令窗口中获益,以发现ILP和MLP。在SMT托管下,传统观点认为单个硬件线程获取和持有不成比例的大量微架构资源的能力应该受到限制,以免影响协同运行线程的性能。我们表明,在低到中等负载下运行的延迟敏感工作负载固有的性能松弛使得将微架构资源转移到共同运行的批处理线程而不影响QoS目标是安全的。基于这一见解,我们介绍了Stretch,这是一种简单的ROB分区方案,系统软件可以调用它,以牺牲另一个线程为代价,为一个硬件线程提供更大的ROB分区。当在SMT核心上为低于其峰值负载的延迟敏感工作负载启用Stretch时,共同运行的批处理应用程序比基线SMT托管平均获得13%的性能(最高30%),并且不会影响QoS约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1