Carole-Jean Wu, D. Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, K. Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Péter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, S. Yoo, Peizhao Zhang
{"title":"Machine Learning at Facebook: Understanding Inference at the Edge","authors":"Carole-Jean Wu, D. Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, K. Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Péter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, S. Yoo, Peizhao Zhang","doi":"10.1109/HPCA.2019.00048","DOIUrl":null,"url":null,"abstract":"At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"357","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 357
Abstract
At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.