Machine Learning at Facebook: Understanding Inference at the Edge

Carole-Jean Wu, D. Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, K. Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Péter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, S. Yoo, Peizhao Zhang
{"title":"Machine Learning at Facebook: Understanding Inference at the Edge","authors":"Carole-Jean Wu, D. Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, K. Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Péter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, S. Yoo, Peizhao Zhang","doi":"10.1109/HPCA.2019.00048","DOIUrl":null,"url":null,"abstract":"At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"357","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 357

Abstract

At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a datadriven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facebook的机器学习:理解边缘推理
在Facebook,机器学习提供了广泛的功能,推动了用户体验的许多方面,包括帖子排名、内容理解、增强现实和虚拟现实的对象检测和跟踪、语音和文本翻译。虽然机器学习模型目前是在定制的数据中心基础设施上训练的,但Facebook正在努力将机器学习推理带到边缘。通过这样做,用户体验得到改善,减少了延迟(推理时间),并且减少了对网络连接的依赖。此外,这也使深度学习的更多应用程序具有仅在边缘可用的重要功能。本文采用数据驱动的方法来呈现Facebook面临的机遇和设计挑战,以便在智能手机和其他边缘平台上本地实现机器学习推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1