The Accelerator Wall: Limits of Chip Specialization

Adi Fuchs, D. Wentzlaff
{"title":"The Accelerator Wall: Limits of Chip Specialization","authors":"Adi Fuchs, D. Wentzlaff","doi":"10.1109/HPCA.2019.00023","DOIUrl":null,"url":null,"abstract":"Specializing chips using hardware accelerators has become the prime means to alleviate the gap between the growing computational demands and the stagnating transistor budgets caused by the slowdown of CMOS scaling. Much of the benefits of chip specialization stems from optimizing a computational problem within a given chip’s transistor budget. Unfortunately, the stagnation of the number of transistors available on a chip will limit the accelerator design optimization space, leading to diminishing specialization returns, ultimately hitting an accelerator wall. In this work, we tackle the question of what are the limits of future accelerators and chip specialization? We do this by characterizing how current accelerators depend on CMOS scaling, based on a physical modeling tool that we constructed using datasheets of thousands of chips. We identify key concepts used in chip specialization, and explore case studies to understand how specialization has progressed over time in different applications and chip platforms (e.g., GPUs, FPGAs, ASICs)1. Utilizing these insights, we build a model which projects forward to see what future gains can and cannot be enabled from chip specialization. A quantitative analysis of specialization returns and technological boundaries is critical to help researchers understand the limits of accelerators and develop methods to surmount them. Keywords-Accelerator Wall; Moore’s Law; CMOS Scaling","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Specializing chips using hardware accelerators has become the prime means to alleviate the gap between the growing computational demands and the stagnating transistor budgets caused by the slowdown of CMOS scaling. Much of the benefits of chip specialization stems from optimizing a computational problem within a given chip’s transistor budget. Unfortunately, the stagnation of the number of transistors available on a chip will limit the accelerator design optimization space, leading to diminishing specialization returns, ultimately hitting an accelerator wall. In this work, we tackle the question of what are the limits of future accelerators and chip specialization? We do this by characterizing how current accelerators depend on CMOS scaling, based on a physical modeling tool that we constructed using datasheets of thousands of chips. We identify key concepts used in chip specialization, and explore case studies to understand how specialization has progressed over time in different applications and chip platforms (e.g., GPUs, FPGAs, ASICs)1. Utilizing these insights, we build a model which projects forward to see what future gains can and cannot be enabled from chip specialization. A quantitative analysis of specialization returns and technological boundaries is critical to help researchers understand the limits of accelerators and develop methods to surmount them. Keywords-Accelerator Wall; Moore’s Law; CMOS Scaling
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速器墙:芯片专业化的极限
使用硬件加速器的专用芯片已成为缓解不断增长的计算需求与CMOS缩放速度放缓导致的晶体管预算停滞之间差距的主要手段。芯片专门化的大部分好处来自于在给定芯片的晶体管预算内优化计算问题。不幸的是,芯片上可用晶体管数量的停滞将限制加速器设计优化的空间,导致专业化回报的减少,最终撞上加速器的墙。在这项工作中,我们解决了未来加速器和芯片专业化的限制是什么?我们通过描述当前加速器如何依赖CMOS缩放来实现这一点,这是基于我们使用数千个芯片的数据表构建的物理建模工具。我们确定了芯片专门化中使用的关键概念,并探索案例研究,以了解专门化在不同应用和芯片平台(例如,gpu, fpga, asic)中是如何随着时间的推移而发展的。利用这些见解,我们建立了一个模型,该模型预测了芯片专业化可以实现和不能实现的未来收益。对专业化回报和技术边界的定量分析对于帮助研究人员理解加速器的局限性并找到克服它们的方法至关重要。Keywords-Accelerator墙;摩尔定律;CMOS扩展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1