Maize–soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling

IF 6 1区 农林科学 Q1 AGRONOMY Crop Journal Pub Date : 2023-12-01 DOI:10.1016/j.cj.2023.05.011
Yiling Li, Ping Chen, Zhidan Fu, Kai Luo, Ping Lin, Chao Gao, Shanshan Liu, Tian Pu, Taiwen Yong, Wenyu Yang
{"title":"Maize–soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling","authors":"Yiling Li,&nbsp;Ping Chen,&nbsp;Zhidan Fu,&nbsp;Kai Luo,&nbsp;Ping Lin,&nbsp;Chao Gao,&nbsp;Shanshan Liu,&nbsp;Tian Pu,&nbsp;Taiwen Yong,&nbsp;Wenyu Yang","doi":"10.1016/j.cj.2023.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest. However, it is difficult to increase yield synergistically because of the reduced photosynthetic abilities of legume leaves under the shade of graminoids. Leaf photosynthetic capacity in relay cropping systems is associated with ecological niche differentiation and photosynthetic compensation after restoration of normal light. We conducted a field experiment in southwest China in 2020–2021 to evaluate the effects of three cropping patterns: maize–soybean relay cropping (IMS), monoculture maize (MM), and monoculture soybean (SS), and N application levels: no N application (NN:0 kg N ha<sup>−1</sup>), reduced N (RN: 180 kg N ha<sup>−1</sup>), and conventional N (CN: 240 kg N ha<sup>−1</sup>). Compared to monocropping, relay cropping increased the stay-green traits of maize and soybean by 13% and 89%, respectively. Relay cropping prolonged the leaf stay-green duration in the maize and soybean lag phase by almost 4 and 8 days, respectively. Relay cropping maize (IM) increased the leaf area index (LAI) by 79.4% to 88.5% under NN and 55.5% to 148% under RN. Relay cropping soybean (IS) increased the LAI from 115% to 437% at days 40 to 50 after anthesis. IM increased yield by 65.6%. IS increased yield by 9.7%. HI and system yield were at their highest values under RN. In the relay cropping system, reduced N application extended green leaf duration, increased photosynthesis inside the canopy at multiple levels, ultimately increases soybean yield synergistically.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123000880/pdfft?md5=2234b229aa4d843713053b3c09f85e2e&pid=1-s2.0-S2214514123000880-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123000880","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest. However, it is difficult to increase yield synergistically because of the reduced photosynthetic abilities of legume leaves under the shade of graminoids. Leaf photosynthetic capacity in relay cropping systems is associated with ecological niche differentiation and photosynthetic compensation after restoration of normal light. We conducted a field experiment in southwest China in 2020–2021 to evaluate the effects of three cropping patterns: maize–soybean relay cropping (IMS), monoculture maize (MM), and monoculture soybean (SS), and N application levels: no N application (NN:0 kg N ha−1), reduced N (RN: 180 kg N ha−1), and conventional N (CN: 240 kg N ha−1). Compared to monocropping, relay cropping increased the stay-green traits of maize and soybean by 13% and 89%, respectively. Relay cropping prolonged the leaf stay-green duration in the maize and soybean lag phase by almost 4 and 8 days, respectively. Relay cropping maize (IM) increased the leaf area index (LAI) by 79.4% to 88.5% under NN and 55.5% to 148% under RN. Relay cropping soybean (IS) increased the LAI from 115% to 437% at days 40 to 50 after anthesis. IM increased yield by 65.6%. IS increased yield by 9.7%. HI and system yield were at their highest values under RN. In the relay cropping system, reduced N application extended green leaf duration, increased photosynthesis inside the canopy at multiple levels, ultimately increases soybean yield synergistically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米-大豆接力种植通过延长花后叶片留绿期和加速籽粒灌浆协同提高大豆产量
禾本科植物和豆科植物的轮作可以实现双收,从而提高产量和土地利用效率。然而,由于豆科植物叶片在禾本科植物的遮蔽下光合能力下降,因此很难实现增产增效。接力种植系统中的叶片光合能力与生态位分化和恢复正常光照后的光合补偿有关。我们于 2020-2021 年在中国西南地区进行了一项田间试验,评估了三种种植模式:玉米-大豆接力种植(IMS)、单作玉米(MM)和单作大豆(SS)以及氮施用水平:不施用氮(NN:0 kg N ha-1)、减少氮(RN:180 kg N ha-1)和常规氮(CN:240 kg N ha-1)的影响。与单作相比,轮作玉米和大豆的留绿性状分别提高了 13% 和 89%。接茬种植使玉米和大豆滞青期的叶片留绿时间分别延长了近 4 天和 8 天。套作玉米(IM)的叶面积指数(LAI)在 NN 条件下提高了 79.4% 至 88.5%,在 RN 条件下提高了 55.5% 至 148%。大豆(IS)在开花后第 40 至 50 天,叶面积指数(LAI)增加了 115% 至 437%。IM 增产 65.6%。IS 增产 9.7%。在 RN 下,HI 和系统产量达到最高值。在接力种植系统中,减少氮的施用可延长绿叶持续时间,在多个层面上提高冠层内的光合作用,最终协同提高大豆产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crop Journal
Crop Journal Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍: The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.
期刊最新文献
Editorial Board Increasing Fusarium verticillioides resistance in maize by genomics-assisted breeding: Methods, progress, and prospects Serotonin enrichment of rice endosperm by metabolic engineering GmTOC1b negatively regulates resistance to Soybean mosaic virus Ectopic expression of OsNF-YA8, an endosperm-specific nuclear factor Y transcription-factor gene, causes vegetative and reproductive development defects in rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1