Motor channelling for safe and effective dynamic constraints in Minimally Invasive Surgery

M. Grammatikopoulou, K. Leibrandt, Guang-Zhong Yang
{"title":"Motor channelling for safe and effective dynamic constraints in Minimally Invasive Surgery","authors":"M. Grammatikopoulou, K. Leibrandt, Guang-Zhong Yang","doi":"10.1109/IROS.2016.7759635","DOIUrl":null,"url":null,"abstract":"Motor channelling is a concept to provide navigation and sensory feedback to operators in master-slave surgical setups. It is beneficial since the introduction of robotic surgery creates a physical separation between the surgeon and patient anatomy. Active Constraints/Virtual Fixtures are proposed which integrate Guidance and Forbidden Region Constraints into a unified control framework. The developed approach provides guidance and safe manipulation to improve precision and reduce the risk of inadvertent tissue damage. Online three-degree-of-freedom motion prediction and compensation of the target anatomy is performed to complement the master constraints. The presented Active Constraints concept is applied to two clinical scenarios; surface scanning for in situ medical imaging and vessel manipulation in cardiac surgery. The proposed motor channelling control strategy is implemented on the da Vinci Surgical System using the da Vinci Research Kit (dVRK) and its effectiveness is demonstrated through a detailed user study.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Motor channelling is a concept to provide navigation and sensory feedback to operators in master-slave surgical setups. It is beneficial since the introduction of robotic surgery creates a physical separation between the surgeon and patient anatomy. Active Constraints/Virtual Fixtures are proposed which integrate Guidance and Forbidden Region Constraints into a unified control framework. The developed approach provides guidance and safe manipulation to improve precision and reduce the risk of inadvertent tissue damage. Online three-degree-of-freedom motion prediction and compensation of the target anatomy is performed to complement the master constraints. The presented Active Constraints concept is applied to two clinical scenarios; surface scanning for in situ medical imaging and vessel manipulation in cardiac surgery. The proposed motor channelling control strategy is implemented on the da Vinci Surgical System using the da Vinci Research Kit (dVRK) and its effectiveness is demonstrated through a detailed user study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动通道在微创手术中安全有效的动态约束
运动通道是一个概念,提供导航和感官反馈,以操作者在主从手术设置。这是有益的,因为机器人手术的引入创造了外科医生和病人解剖之间的物理分离。提出了主动约束/虚拟夹具,将导引约束和禁区约束集成到统一的控制框架中。开发的方法提供了指导和安全操作,以提高精度和减少无意中组织损伤的风险。对目标解剖结构进行在线三自由度运动预测和补偿,以补充主约束。提出的主动约束概念应用于两种临床场景;表面扫描在心脏手术中的原位医学成像和血管操作。提出的电机通道控制策略使用达芬奇研究工具包(dVRK)在达芬奇手术系统上实现,并通过详细的用户研究证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1