{"title":"A multitasking surrogate-assisted differential evolution method for solving bi-level optimization problems","authors":"Igor L. S. Russo, H. Barbosa","doi":"10.1109/CEC55065.2022.9870241","DOIUrl":null,"url":null,"abstract":"Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Bi-level programming (BLP) is a hierarchical decision-making problem in which part of the constraints is determined by solving other optimization problems. Classic op-timization techniques cannot be applied directly, while standard metaheuristics often demand high computational costs. The transfer optimization paradigm uses the experience acquired when solving one optimization problem to speed up a distinct but related task. In particular, the multitasking technique ad-dresses two or more optimization tasks simultaneously to explore similarities and improve convergence. BLPs can benefit from multitasking as many (potentially similar) lower-level problems must be solved. Recently, several studies used surrogate methods to save expensive upper-level function evaluations in BLPs. This work proposes an algorithm based on Differential Evolution supported by transfer optimization and surrogate models to solve BLPs more efficiently. Experiments show a reduction of up to 86% regarding the number of function evaluations of the upper-level problem while achieving similar or superior accuracy when compared to state-of-the-art solvers.